MANDIANT®

Reconstructing the Scene of the Crime

METASPLOIT AUTOPSY

Who are they?

STEVE DAVIS

 Security Consultant / Researcher at MANDIANT

PETER SILBERMAN

 Engineer / Researcher at MANDIANT

Agenda

- 1/2 Demo
 - Pop it like its *hotttt*
- Problem / Solution
- Process Acquisition
- Metasploit
- Meterpreter Communication
- Metasploit Forensic Framework (MSFF)
- 1/2 Demo
 - Reconstructing it like its hotttt

Demo Part 1

 Box Windows XP Fresh SP3
 Same box that our slides are running from... Oh noes!

MS08-067 meterpreter bind tcp

Back to our regularly scheduled slides...

Problem

- Meterpreter
 - Traditional disk forensics is helpless
 - Attack vector may never touch disk
 - No way to determine what happened
- Goal
 - Reconstruct attacker's Meterpreter sessions with as much reliability as possible

Solution

- Acquire exploited processes' address space
- Parse out meterpreter protocol from acquired memory sections
 - Reconstruct meterpreter sessions

MANDIANT Memoryze

ENUMERATION

- All running processes
 - Handle table
 - Memory sections
 - Ports
 - Strings
- Drivers
 - Including layered ones
- Certain kernel hooks

ACQUISITION

- Physical memory image
- Running process's memory space
 - Binary
 - Loaded DLL's
 - Stacks
 - Heaps
 - Data sections
- Drivers

MADRIANT

MANDIANT Memoryze

- Can analyze memory live, or from image
 - Live analysis can use paging file for a more complete picture of memory
- Supported platforms
 - 32-bit Windows 2000, XP, 2003 Server
 - Beta support for Vista
- Download at
 - <u>http://www.mandiant.com/</u>

Process Acquisition

Why Process Acquisition?

- Acquisition was originally used mostly for malware analysis
 - Acquire packed binaries running in memory
 - Usually utilized debuggers
 - Can defeat most packers
- Acquisition has other uses:
 - Acquire unknown binaries for Virustotal
 - Acquire memory to look for protocol strings
 - Encrypted strings are unecrypted in memory

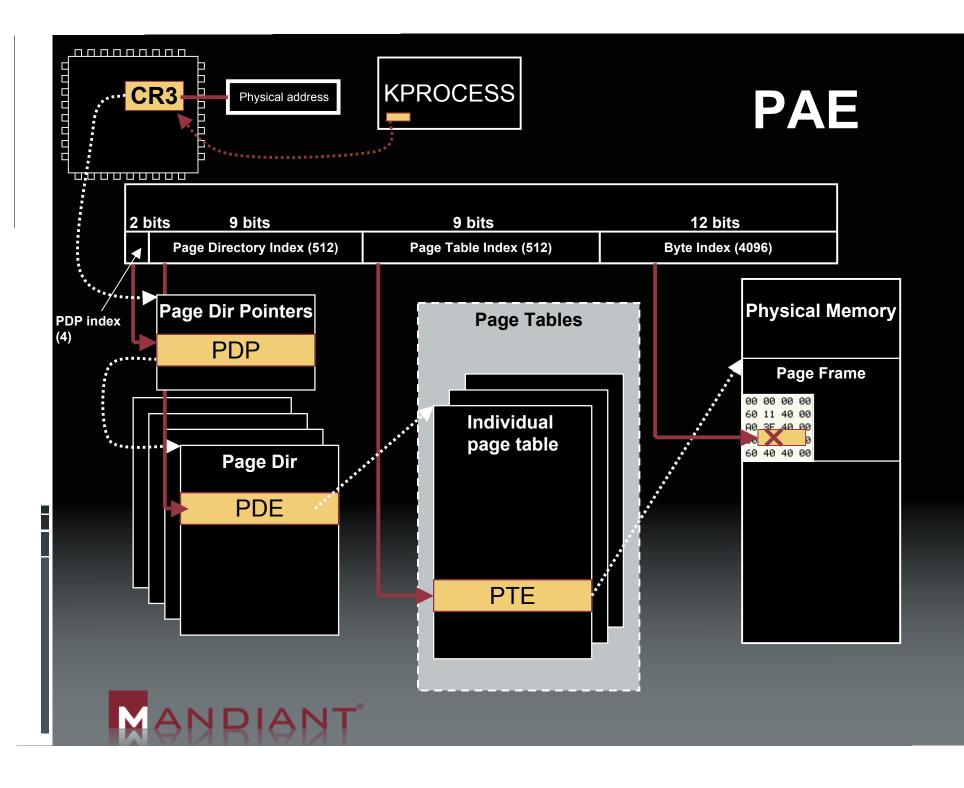
Classic Process Acquisition

- Current Methodology
 - Open handle to process, OR
 - Attach to process
 - ReadProcessMemory(hProc, ImageBase, buffer, ImageSize, BytesRead)
- Current drawbacks
 - Requires "touching" a process
 - Detecting debuggers is trivial
 - Gives an incomplete picture of memory

Process Acquisition: Memoryze

RELIES ON

- Physical memory access
- Virtual to physical address translation


DOES NOT RELY ON

- Attaching to a process with a debugger
- Opening handles to processes or threads
- API calls
- The OS's Virtual Memory Manager

Memoryze: Process Acquisition

- Accessing Physical Memory
 - Live analysis
 - Acquisition
- Device\PhysicalMemory
 - Section object exposed by Windows
 - Reading from handle allows application to read physical memory
 - Every virtual address must be translated to a physical offset within the section object

Memoryze: Process Acquisition

- Map physical memory into buffer
- Acquisition:
 - Write buffer to disk (dd)
- Analysis:
 - Scan buffer for known signatures of kernel structures, e.g. EPROCESS

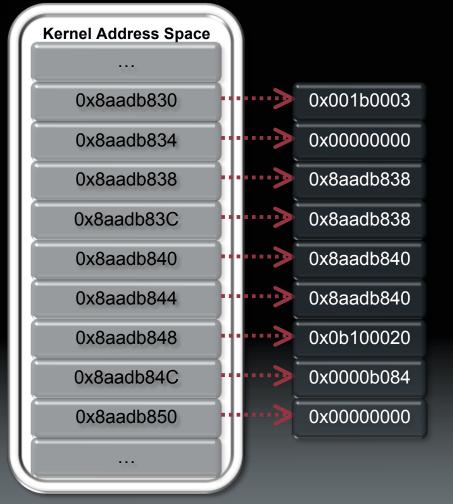
New Process Acquisition

- Find all processes (EPROCESS) in physical memory
 - VadRoot within the EPROCESS structure
 - The VadRoot is the top node of a tree of Memory Manager Virtual Address Descriptor (MMVAD) entries
 - MMVAD entries contain the virtual start address and size of each memory section within a process
 - MMVAD entries containing mapped DLL's or EXE's will have a pointer to the path of the binary
 - Helps manage process' virtual address space

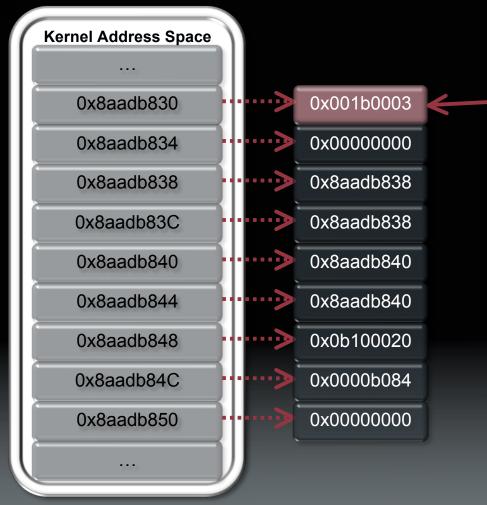
Memoryze: Process Acquisition

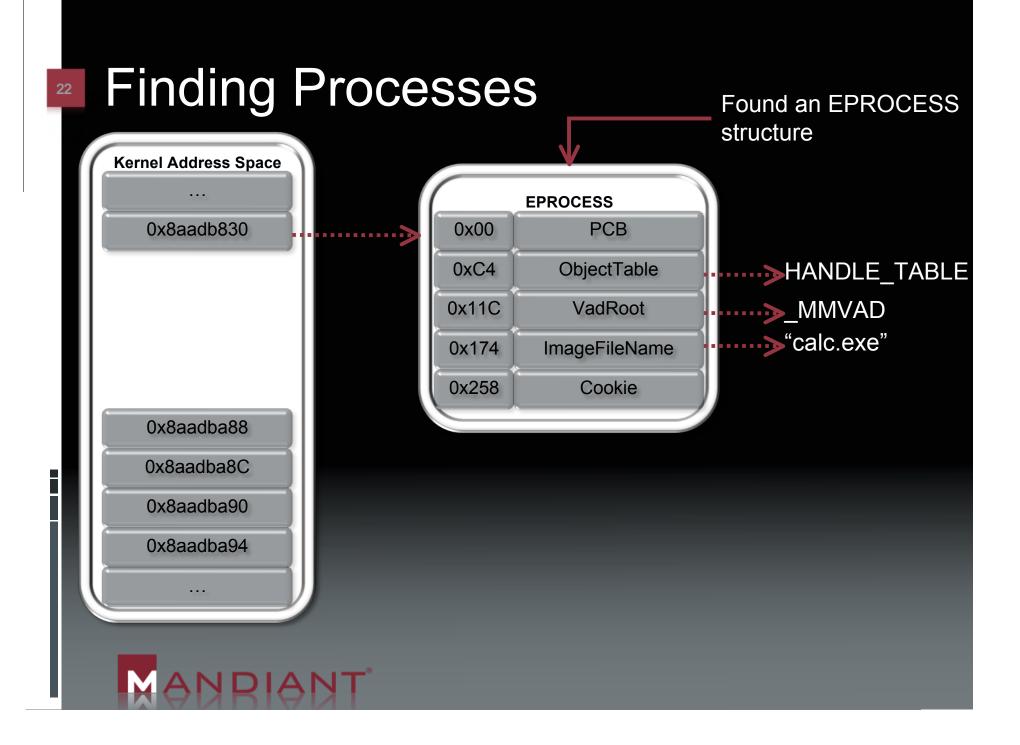
 OllyDbg's memory map view shows the different sections

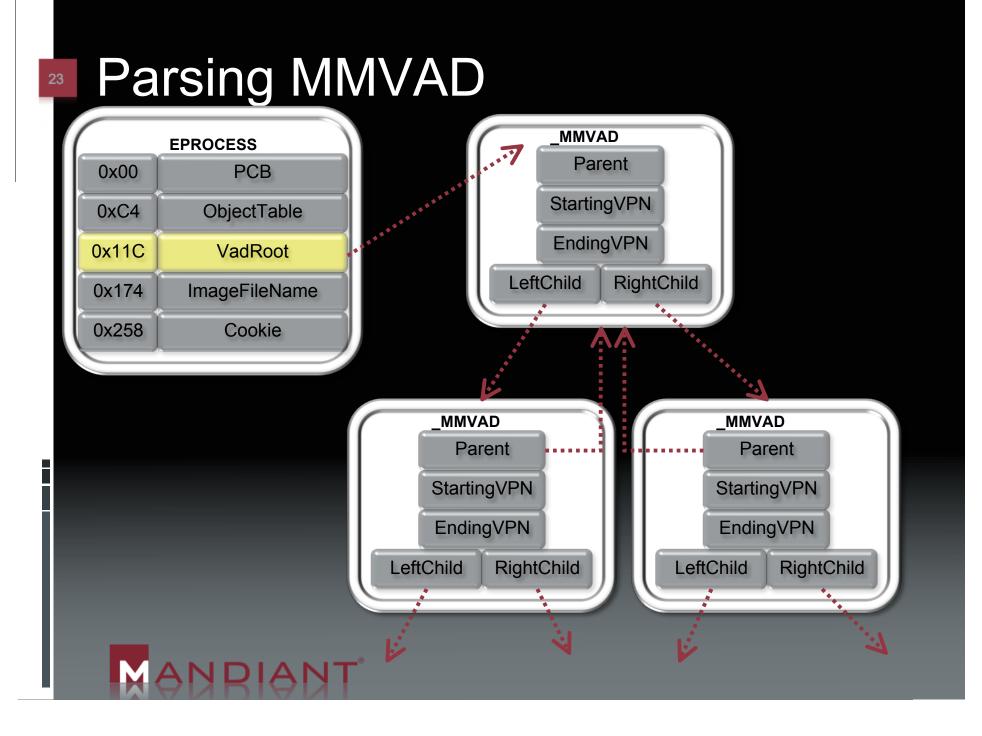
Address	Size	Owner	Section	Contains	Туре	Access	Initial
00010000 00020000 00078000 0007C000 0007C000 00080000 00080000 00080000 00080000 00080000 00180000	00001000 00001000 00004000 00003000 00003000 00002000 00010000 00010000			stack of ma	Priv Priv Priv Priv Map Priv Priv Map	RW RW RW Gua: RW Gua: R R R R	

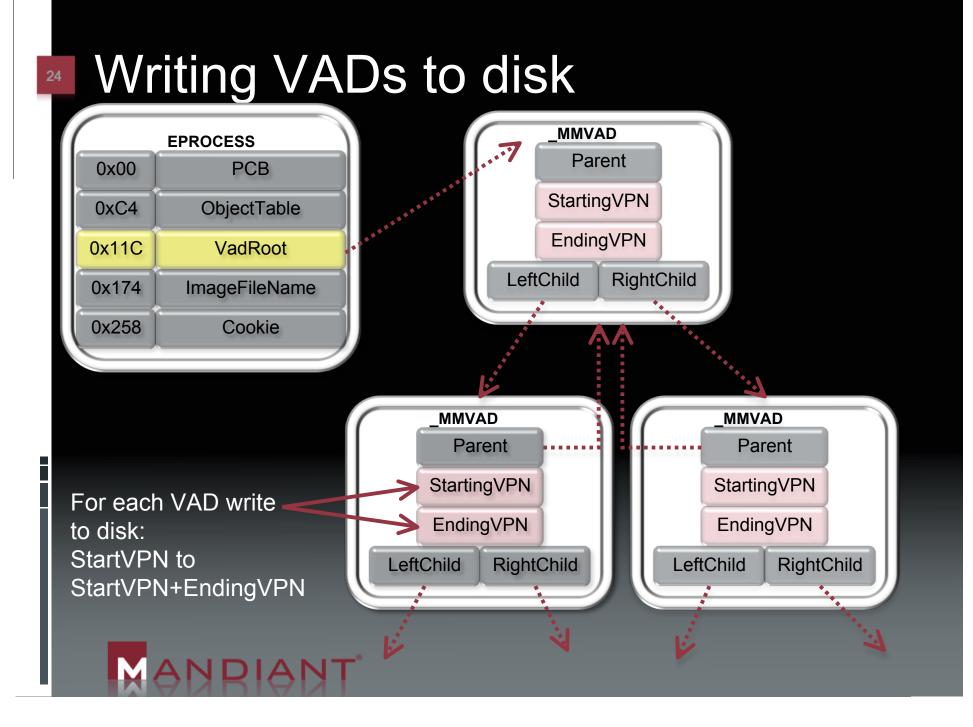

- Each address range is an entry in VadRoot, represented by a MMVAD structure
- Enumeration of VadRoot allows access to heaps, stacks, and binary images
 ANRIANT

Finding Processes


Finding Processes




Finding Processes


21

Indicates EPROCESS, DISPATCH_HEADER, further checks are needed

976_%5cWINDOW5%5csystem32%5cws2_32.dll 976_%5cWINDOW5%5csystem32%5cws2help.dll 💁 976_%5cWINDOWS%5csystem32%5cwshtcpip.dll 976_%5cWINDOW5%5csystem32%5cwsock32.dll 😒 976_%5cWINDOW5%5csystem32%5cwtsapi32.dll 976_%5cWINDOWS%5csystem32%5cwuaueng.dll 976_%5cWINDOWS%5csystem32%5cwuauserv.dll 976_%5cWINDOWS%5csystem32%5cwups2.dll 976_%5cWINDOW5%5csystem32%5cwups.dll 976 %5cWINDOWS%5csystem32%5cwzcsvc.dll 976_%5cWINDOW5%5csystem32%5cxactsrv.dll 💁 976_%5cWINDOW5%5cWinSx5%5cx86_Microsoft.Windows.Common-Controls_6595b64144ccf1df_6.0.10.0_x-ww_f7fb5805%5ccomctl32.dll BatchResult.xml C%3a%5cWINDOW5%5cSystem32%5c976_0x00a00000-0x00a3ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00a40000-0x00a7ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00a80000-0x00a81fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00a90000-0x00a95fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00aa0000-0x00aaffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00ab0000-0x00ab0fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00ac0000-0x00ac1fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00ad0000-0x00b0ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00b10000-0x00b1ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00b20000-0x00b21fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00b30000-0x00c2ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00c30000-0x00caffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00cb0000-0x00ceffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00cf0000-0x00d2ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00d30000-0x00d3ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00d40000-0x00d41fff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00d50000-0x00e4ffff.VAD C%3a%5cWINDOWS%5cSystem32%5c976_0x00e50000-0x00e8ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00e90000-0x00ecffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00ed0000-0x00f0ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00f10000-0x00f4ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00f50000-0x00f8ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x00f90000-0x00fcffff.VAD C%3a%5cWINDOWS%5cSystem32%5c976_0x00fd0000-0x00fe7fff.VAD C%3a%5cWINDOWS%5cSystem32%5c976_0x00ff0000-0x00ff0fff.VAD C%3a%5cWINDOWS%5cSystem32%5c976_0x001a0000-0x001b5fff.VAD C%3a%5cWINDOWS%5cSystem32%5c976_0x01a10000-0x01a4ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x01a50000-0x01a5ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x01a60000-0x01a6ffff.VAD C%3a%5cWINDOW5%5cSystem32%5c976_0x01a70000-0x01a7ffff.VAD

C%3a%5cWINDOWS%5cSystem32%5c976_0x01a80 C%3a%5cWINDOWS%5cSystem32%5c976_0x01a90 C%3a%5cWINDOWS%5cSystem32%5c976_0x01aa0 C%3a%5cWINDOWS%5cSystem32%5c976_0x01ac0 C%3a%5cWINDOW5%5cSystem32%5c976_0x01ad0 C%3a%5cWINDOWS%5cSystem32%5c976_0x01ae0 C%3a%5cWINDOWS%5cSystem32%5c976_0x01af00 C%3a%5cWINDOW5%5cSystem32%5c976_0x01b00 C%3a%5cWINDOW5%5cSystem32%5c976_0x01b10 C%3a%5cWINDOW5%5cSystem32%5c976_0x01b20 C%3a%5cWINDOW5%5cSystem32%5c976_0x01b30 C%3a%5cWINDOWS%5cSystem32%5c976_0x01bb0 C%3a%5cWINDOW5%5cSystem32%5c976_0x01cd0 C%3a%5cWINDOWS%5cSystem32%5c976_0x01cf00 C%3a%5cWINDOW5%5cSystem32%5c976_0x01d00 C%3a%5cWINDOW5%5cSystem32%5c976_0x01d40 C%3a%5cWINDOWS%5cSystem32%5c976_0x01e40 C%3a%5cWINDOWS%5cSystem32%5c976_0x01e80 C%3a%5cWINDOW5%5cSystem32%5c976_0x01ec0 C%3a%5cWINDOWS%5cSystem32%5c976_0x03cf00 C%3a%5cWINDOWS%5cSystem32%5c976_0x03df0 C%3a%5cWINDOW5%5cSystem32%5c976_0x03f500 C%3a%5cWINDOW5%5cSystem32%5c976_0x004d0 C%3a%5cWINDOW5%5cSystem32%5c976_0x004e0 C%3a%5cWINDOWS%5cSystem32%5c976_0x005a0 C%3a%5cWINDOWS%5cSystem32%5c976_0x005e0 C%3a%5cWINDOW5%5cSystem32%5c976_0x006b0 C%3a%5cWINDOWS%5cSystem32%5c976_0x006f0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7f6f00 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7b0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7c0 C%3a%5cWINDOW5%5cSystem32%5c976_0x7ff7d0 C%3a%5cWINDOW5%5cSystem32%5c976_0x7ff7e0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff7f0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff8a0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff8c0 C%3a%5cWINDOW5%5cSystem32%5c976_0x7ff8d0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff8e0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9a0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9b0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9c0 C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9dC C%3a%5cWINDOWS%5cSystem32%5c976_0x7ff9e0

New Process Acquisition

- Allows dumping of full address space
- Overcomes most binary packing
- Captures communication protocol strings
- Bypasses any anti-debugging techniques
- Acquire(s):
 - DLL's that are only in memory
 - Code corresponding to injected threads or shellcode

Metasploit

Have YOU read the developer docs?

Metasploit

- Open source exploit framework originally developed in Perl (1.x, 2.x) by HD Moore et al.
 - Currently Ruby (3.x)
- Platform independent
- Multiple payloads

Meterpreter

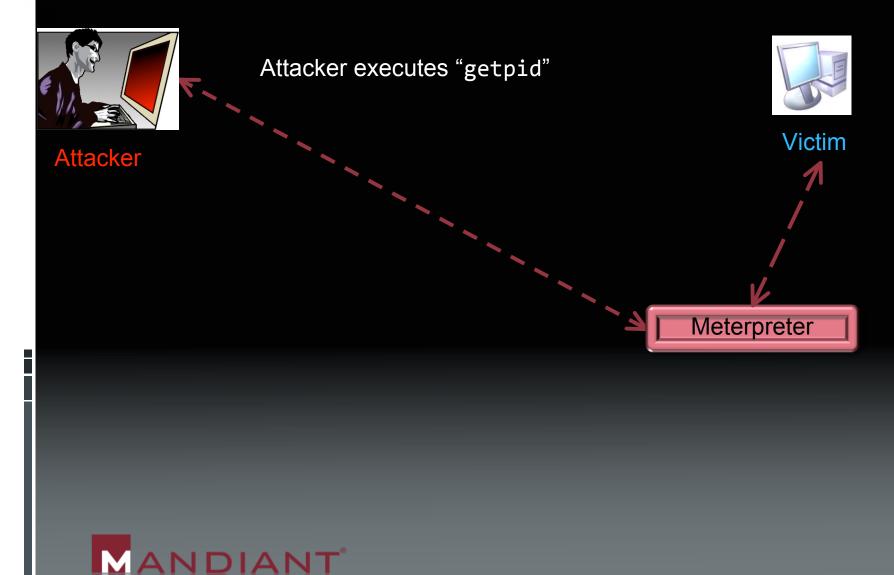
- The next generation of post-exploitation payloads
 - Forget /bin/sh and cmd.exe
 - Limited to stdin, stderr, stdout
 - Non-interactive
- Full functioning client \rightarrow server interpreter
 - File upload / download
 - Key logging
 - Simple extension addition
- Can be completely memory resident

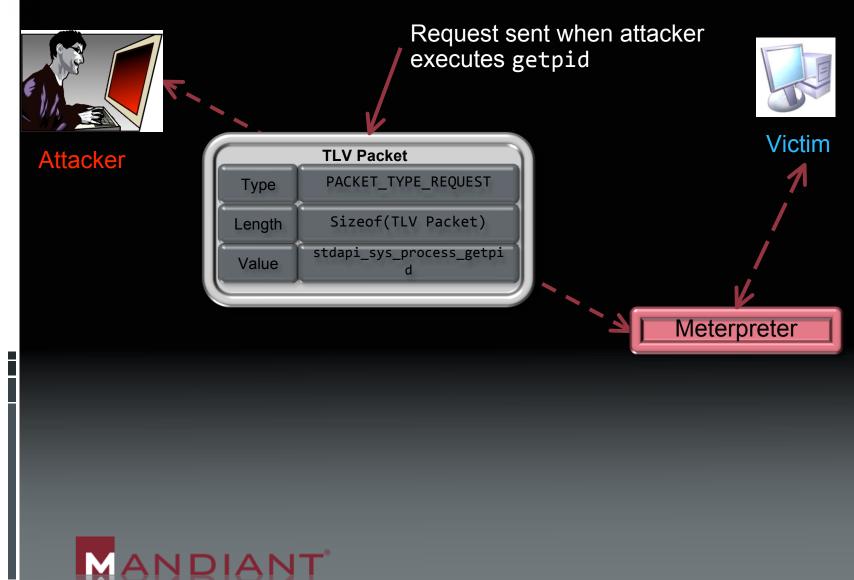
Under the Meterpreter Hood

- DLL gets injected into exploited process
- Hooks LoadLibrary (on Windows)
 - Applies hook to Win32 API LoadLibrary
 - Changes lower level API's behavior to allow LoadLibrary to load a DLL from memory
- Hooked API's to allow loading of metsrv.dll from memory
 - NtOpenSection, NtCreateSection
 - NtQueryAttributesFile
 - NtOpenFile, NtMapViewOfSection

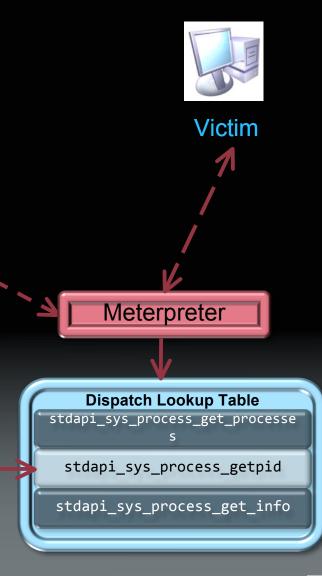
- TLV (really LTV) Structures
 - Provide communication protocol for meterpreter server and client
 - 32 bit Length and Type Fields
 - n bits Value Field

Attacker


Sends Exploit


Payload Meterpreter bind_tcp

Victim



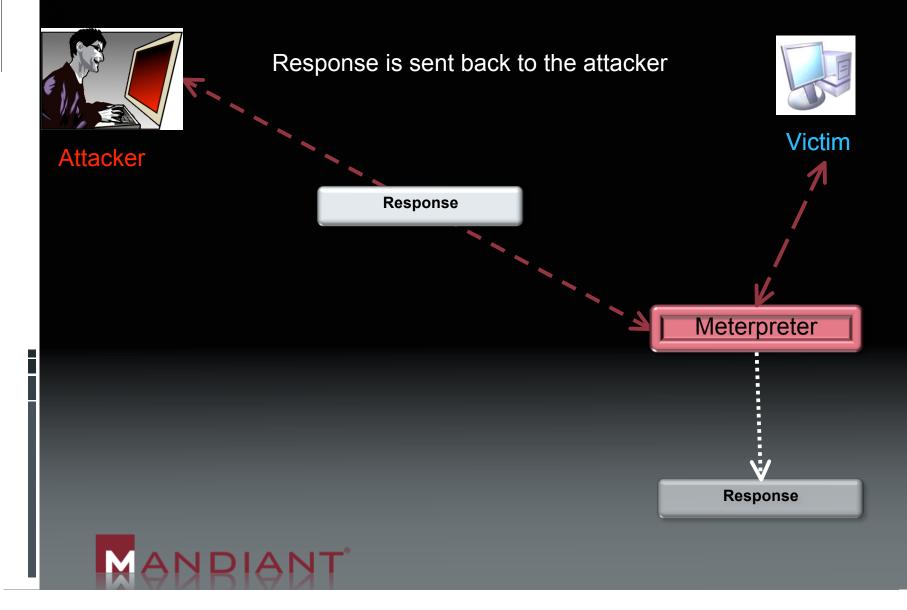
Attacker

Meterpreter does an internal lookup for the method requested: stdapi_sys_process_getpid

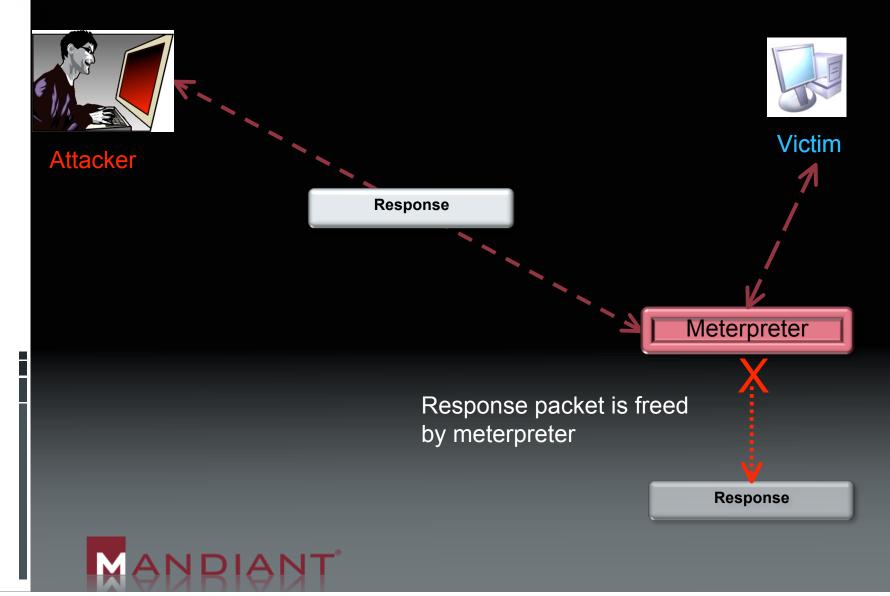
Attacker

Meterpreter builds a response on the heap; response includes the result of GetCurrentProcessId

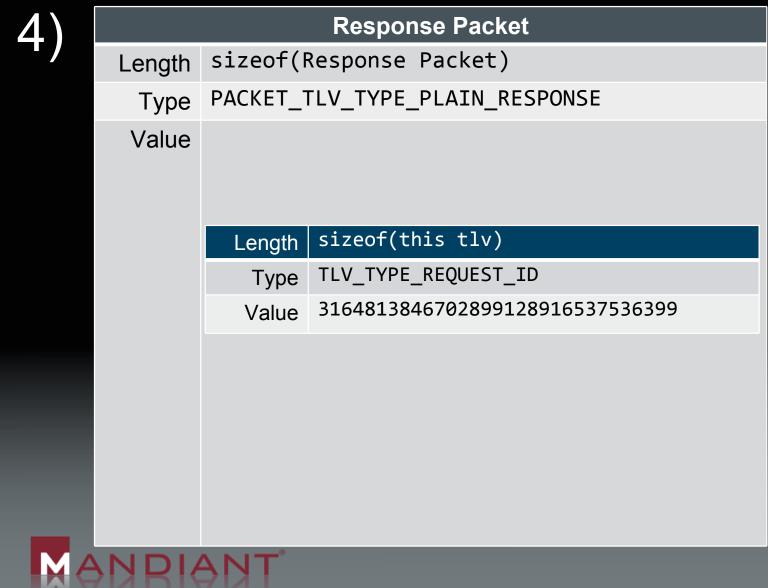
Response

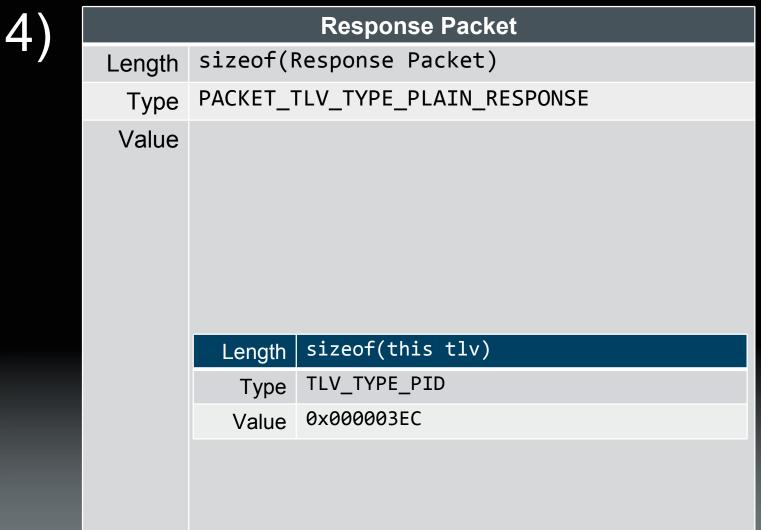

****/

Meterpreter


Victim

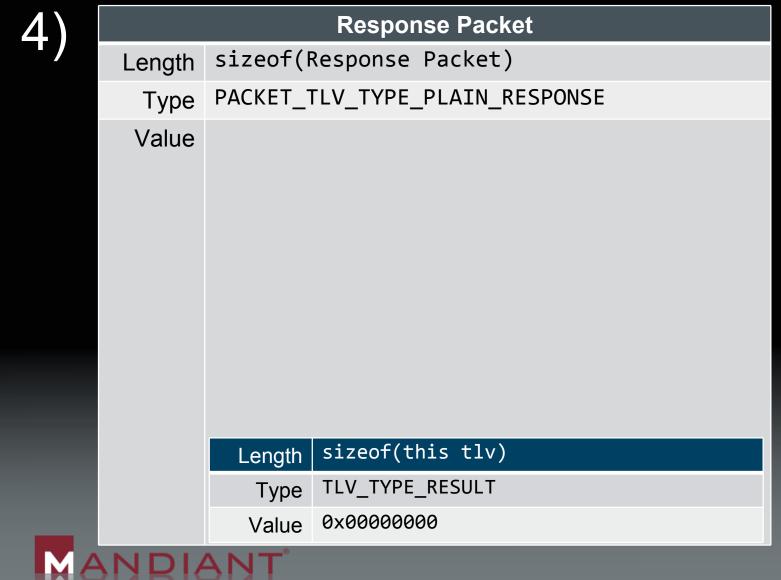
Meterpreter Communication


Meterpreter Communication


Response Packet Structure (1 of

4)			Response Packet
• /	Length	sizeof(F	Response Packet)
	Туре	PACKET_1	<pre>FLV_TYPE_PLAIN_RESPONSE</pre>
	Value	Length	<pre>sizeof(this tlv)</pre>
		Туре	TLV_TYPE_METHOD
		Value	<pre>stdapi_sys_process_getpid</pre>
X	NARK		

Response Packet Structure (2 of



Response Packet Structure (3 of

Response Packet Structure (4 of

Response Packet Structure

		Response Packet									
Length	<pre>sizeof(F</pre>	sizeof(Response Packet)									
Туре	PACKET_1	<pre>FLV_TYPE_PLAIN_RESPONSE</pre>									
Value	Length	<pre>sizeof(this tlv)</pre>									
	Туре	TLV_TYPE_METHOD									
	Value	<pre>stdapi_sys_process_getpid</pre>									
	Length	<pre>sizeof(this tlv)</pre>									
	Туре	TLV_TYPE_REQUEST_ID									
	Value	3164813846702899128916537536399									
	Length	<pre>sizeof(this tlv)</pre>									
	Туре	TLV_TYPE_PID									
	Value	0x00003EC									
	Length	<pre>sizeof(this tlv)</pre>									
	Туре	TLV_TYPE_RESULT									
	Value	0x0000000									

																		stdapi_s
79	73	5F	70	72	6F	63	65	73	73	5F	67	65	74	70	69	;	ys_proce	ss_getpi
64	00	00	00	00	29	00	01	00	02	33	31	36	34	38	31	;	d)	316481
33	38	34	36	37	30	32	38	39	39	31	32	38	39	31	36	;	38467028	99128916
35	33	37	35	33	36	33	39	39	34	00	00	00	00	OC	00	;	53753639	94
02	08	FC	00	00	03	EC	00	00	00	OC	00	02	00	04	00	;	üì.	
00	00	00	01	48	05	98	01	OB	00	OE	00	C7	01	OE	00	;	H.".	ç

TLV Packet

Length	Doesn't exist do to free()
--------	----------------------------

Type: TLV_TYPE_METHOD 0x00010001

Value: stdapi_sys_process_getpid

08	74	04	06	00	01	00	01	73	74	64	61	70	69	5F	73	;	.tstdapi_s
79	73	5F	70	72	6F	63	65	73	73	5F	67	65	74	70	69	;	ys_process_getpi
64	00	00	00	00	29	00	01	00	02	33	31	36	34	38	31	;	d)
																	3846702899128916
35	33	37	35	33	36	33	39	39	34	00	00	00	00	0C	00	;	5375363994
02	08	FC	00	00	03	EC	00	00	00	0C	00	02	00	04	00	;	üì
00	00	00	01	48	05	98	01	OB	00	OE	00	С7	01	OE	00	;	Ĥ.~Ç

TLV Packet											
Length	0x29										
Type:	TLV_TYPE_REQUEST_ID	0x00010002									
Value:	316481384670289912891653	37536399									

MANRIANT

TLV Packet											
Length	0x0C										
Type:	TLV_TYPE_PID	0x000208FC									
Value:	0x000003EC										

MANRIANT

08	74	04	06	00	01	00	01	73	74	64	61	70	69	5F	73	;	.tstdapi_s
79	73	5F	70	72	6F	63	65	73	73	5F	67	65	74	70	69	;	ys_process_getpi
64	00	00	00	00	29	00	01	00	02	33	31	36	34	38	31	;	d)316481
33	38	34	36	37	30	32	38	39	39	31	32	38	39	31	36	;	3846702899128916
															· · · · · · · · · · · · · · · · · · ·	-	5375363994
																	üì
00	00	00	01	48	05	98	01	OB	00	OE	00	С7	01	OE	00	;	H.~Ç

TLV Packet											
Length	0x0C										
Type:	TLV_TYPE_RESULT	0x00020004									
Value:	0x00000000										

Meterpreter Communication

- The response packet is freed by meterpreter
- However...
- When Windows' memory manager frees memory, it is not *immediately* reused.
 - It can take hours for memory to be reclaimed after it has been freed.

Metasploit Forensic Framework

Finding one pwned system at a time

Metasploit Forensic Framework

- Scan acquired VADs looking for:
 - Strings containing meterpreter methods
 - This indicates a TLV response to a specific method
 - Parsing out the response TLV gives analysts the data attackers received
 - Also indicates what commands were executed on the machine

Conclusion

- Windows memory manager gives analysts a chance to see artifact memory
- Large impact for forensics
 Not so large on Metasploit project
- Combining memory analysis with further research will lead to better and more effective projects

Demo Part 3

- Acquire svchost.exe
 - Remember attacker terminated connection
 roughly 30 minutes ago
 - Run Metasploit Forensic Framework (msff)

Questions???

- <u>stephen.davis@mandiant.com</u>
- <u>peter.silberman@mandiant.com</u>

