
Make My Day –
Just Run A Web Scanner

Toshinari Kureha, Fortify Software

Countering the faults of typical web
scanners through bytecode injection

Agenda
 Problems With Black Box Testing

 Approaches To Finding Security Issues
 4 Problems With Black Box Testing

 Solution:WhiteBox Testing With ByteCode Injection
 The Solution
 Demo Of Solution
 Building The Solution

 Q&A

Current Practice

Current Practice
How Do You Find Security Issues?
 Looking at architectural / design documents
 Looking at the source code

 Static Analysis

 Looking at a running application
 Dynamic Analysis

Current Practice
 Dynamic Analysis

 Testing & Analysis Of Running Application
 Find Input
 Fuzz Input
 Analyze Response

 Commercial Web Scanners
 Cenzic
 SPIDynamics
 Watchfire

Current Practice
Most People Use Web Scanners Because…

 Easy To Run
 Fast To Run
 “Someone Told Me To”

Dynamic Analysis
Demo

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 “Did I Do A Good Job?”

Question 1: How Thorough Was My
Test?
 Do You Know How Much Of Your

Application Was Tested?

Question 1: How Thorough Was My
Test?
 How Much Of The Application Do You

Think You Tested?

Truth About Thoroughness
 We ran a “Version 7.0 Scanner” on the

following:

70% classes
20% blocks
23% lines

45% classes
19% blocks
22% lines

34% classes
12% blocks
14% lines

EMMA Code Coverage Tool

18%

31.2%

30.5%
Web
Source

Java PetStore 2

JCVS Web

HacmeBooks
Application

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low






Question 2: Did I Find All
Vulnerabilities?
 3 Ways To Fail

 Didn’t Test
 Tested – But Couldn’t Conclude
 Can’t Test

Question 2: Did I Find All
Vulnerabilities?
1. Didn’t Test

 If The Web Scanner Didn’t Even Reach That
Area, It Cannot Test!

Application

Tested
Vulnerabilities
Not Found

Untested

Vulnerabilities
Found

Question 2: Did I Find All
Vulnerabilities?
2. Tested, But Couldn’t Conclude

 Certain Classes Of Vulnerabilities Sometimes
Can Be Detected Through HTTP Response
 SQL Injection
 Command Injection
 LDAP Injection

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 ServletOutputStream out = res.getOutputStream();
 String user = req.getParameter("user");
 if(user != null) {
 try {
 String[] args = { "/bin/sh", "-c", "finger " + user };
 Process p = Runtime.getRuntime().exec(args);
 BufferedReader fingdata = new BufferedReader(new
InputStreamReader(p.getInputStream()));
 String line;
 while((line = fingdata.readLine()) != null)
 out.println(line);
 p.waitFor();
 } catch(Exception e) {
 throw new ServletException(e);
 }
 } else {
 out.println("specify a user");
 }
 …

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 ServletOutputStream out = res.getOutputStream();
 String user = req.getParameter("user");
 if(user != null) {
 try {
 String[] args = { "/bin/sh", "-c", “sendMail.sh " + user };
 Process p = Runtime.getRuntime().exec(args);
 p.waitFor();
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 out.println(“Thank you note was sent”);
 } else {
 out.println("specify a user");
 }
 …

Question 2: Did I Find All
Vulnerabilities?
3. Can’t Test

 Some Vulnerabilities Have No Manifestation In
Http Response

Application

Log
File

Client

I hope they’re not
logging my CC# into

plaintext log file

cc num

cc num

“Your order will be
processed in 2 days”

HTTP
Response

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test




Question 3: Are All The Results
Reported True?
 No Method Is Perfect
 Under What Circumstances Do Web

Scanners Report False Positives?
 Matching Signature On A Valid Page
 Matching Behavior On A Valid Page

 Matching Signature On A Valid Page

Question 3: Are All The Results
Reported True?

Question 3: Are All The Results
Reported True?
 Matching Behavior On A Valid Page

 “To determine if the application is vulnerable to SQL
injection, try injecting an extra true condition into the
WHERE clause… and if this query also returns the
same …, then the application is susceptible to SQL
injection” (from paper on Blind SQL Injection)

 E.g.
 http://www.server.com/getCC.jsp?id=5

 select ccnum from table where id=‘5’
 http://www.server.com/getCC.jsp?id=5’ AND ‘1’=‘1

 select ccnum from table where id=‘5’ AND ‘1’=‘1’

Question 3: Are All The Results
Reported True?
 E.g.

 http://www.server.com/getCC.jsp?id=5
 select ccnum from table where id=‘5’
 Response:

 “No match found” (No one with id “5”)
 http://www.server.com/getCC.jsp?id=5’ AND ‘1’=‘1

 select ccnum from table where id=‘5\’ AND \‘1\’=\‘1’
 Response

 “No match found” (No one with id “5’ AND ‘1’=‘1”)
 All single quotes were escaped.

 According To The Algorithm (“inject a true clause and
look for same response”), This Is SQL Injection
Vulnerability!

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
 Are All The Results Reported True?

 Susceptible To False Signature & Behavior Matching


Question 4: How Do I Fix The
Problem?
 Security Issues Must Be Fixed In Source Code
 Information Given

 URL
 Parameter
 General Vulnerability Description
 HTTP Request/Response

 But Where In My Source Code Should I Look
At?

Question 4: How Do I Fix The
Problem?
 Incomplete Vulnerability Report -> Bad Fixes
 Report:

 Injecting “AAAAA…..AAAAA” Caused Application To
Crash

 Solution By Developers:
 ….
 if (input.equals(“AAAAA…..AAAAA”))
 return;
 …..

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
 Are All The Results Reported True?

 Susceptible To Signature & Behavior Matching
 How Do I Fix The Problem?

 No Source Code / Root Cause Information

Attacking The Problems
White Box Testing With

Bytecode Injection

Agenda
 Problems With Black Box Testing

 Approaches To Finding Security Issues
 4 Problems With Black Box Testing

 Solution:WhiteBox Testing With ByteCode Injection
 The Solution
 Demo Of Solution
 Building The Solution

 Q&A

Review…

Web
Scanne

r
Web

Application

Application Server

HTTP

Database

File
System

Other
Apps

and Proposal

Verify
Results Verify

Results
Verify

Results
Verify

Results
Watch
Result

How Will Monitors Solve The
Problems?
 How Thorough Was

My Test?
 Did I Find All My

Vulnerabilities?
 Are All The Results

Reported True?
 How Do I Fix The

Problem?

Monitors Inside Will Tell
Which Parts Was Hit

Monitors Inside Detects
More Vulnerabilities

Very Low False Positive
By Looking At Source Of
Vulnerabilities

Monitors Inside Can Give
Root Cause Information

How To Build The Solution
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

How Do You Inject The Monitors?
 Problem: How Do You Put The Monitors Into The

Application?

 Assumption: You Do Not Have Source Code,
Only Deployed Java / .NET Application

 Solution: Bytecode Weaving
 AspectJ for Java
 AspectDNG for .NET

How Does Bytecode Weaving Work?

Original
.class

AspectJ New
.class

New Code &
Location Spec.

Similar process for .NET

How Does Bytecode Weaving Work?
List getStuff(String id) {
 List list = new ArrayList();
 try {

String sql = “select stuff from
mytable where id=‘” + id + “’”;
JDBCstmt.executeQuery(sql);

 } catch (Exception ex) {
log.log(ex);

 }
 return list;
}

List getStuff(String id) {
 List list = new ArrayList();
 try {

String sql = “select stuff from
mytable where id=‘” + id + “’”;
MyLibrary.doCheck(sql);
JDBCstmt.executeQuery(sql);

 } catch (Exception ex) {
log.log(ex);

 }
 return list;
}

 Before
“executeQuery()”

Call
“MyLibrary.doCheck()”

Bytecode Injection Demo

Applying Byte-Code Injection To
Enhance Security Testing
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

Where Do You Inject The Monitors?
 All Web Inputs (My Web Scan Should Hit All Of

Them)
 request.getParameter, form.getBean

 All Inputs (Not All Inputs Are Web)
 socket.getInputStream.read

 All “Sinks” (All Security Critical Functions)
 Statement.executeQuery(String)
 (FileOutputStream|FileWriter).write(byte[])
 …

Applying Byte-Code Injection To
Enhance Security Testing
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

What Should The Monitors Do?
Report Whether The Monitor Was Hit
Analyze The Content Of the Call For

Security Issues
Report Code-Level Information About

Where The Monitor Got Triggered

aspect SQLInjection {
 pointcut sqlExec(String sql):call(ResultSet Statement.executeQuery(String))
 && args(sql);
 before(String sql) : sqlExec(sql) { checkInjection(sql, thisJoinPoint); }
 void checkInjection(String sql, JoinPoint thisJoinPoint){

System.out.println("HIT:" +
thisJoinPoint.getSourceLocation().getFileName() +

thisJoinPoint.getSourceLocation().getLine());
if (count(sql, '\'')%2 == 1) {

 System.out.println("*** SQL Injection detected. SQL statement
being executed as follows: “ + sql);

}
…..

What Should The Monitors Do?

1) Report whether API was hit or not

2) Analyze The Content Of The API Call

3) Report Code-Level Information

Proof Of Concept
 Running The Custom Solution

With Additional Work on UI

Coverage

With Additional Work on UI

Security Issues Detail

Security Issues Detail – SQL Injection

Security Issue Detail – Privacy
Violation

Conclusions – Web Scanners
 Good

 Easy To Use
 Finding Smoking Gun

 Bad
 Lack Of Coverage Information
 False Negative
 False Positive
 Lack Of Code-Level / Root Cause Information

Conclusions – White Box Testing
 Bytecode Injection Require Access To

Running Application
 In Exchange …

 Gain Coverage Information
 Find More Vulnerabilities, More Accurately
 Determine Root Cause Information

Conclusions – Use Your Advantage

Access To
Application

Security
Knowledge

Attempts

Time

DefenderAttacker

Thank You
 Questions?

 Email: tkureha at fortifysoftware.com

