Make My Day —
Just Run A Web Scanner

Countering the faults of typical web
scanners through bytecode injection

Toshinari Kureha, Fortify Software

Agenda

Problems With Black Box Testing

= Approaches To Finding Security Issues
= 4 Problems With Black Box Testing

Solution:WhiteBox Testing With ByteCode Injection

= The Solution
= Demo Of Solution
= Building The Solution

QLY

Current Practice

Current Practice

How Do You Find Security Issues?
Looking at architectural / design documents

Looking at the source code
= Static Analysis

Looking at a running application
= Dynamic Analysis

Current Practice

Dynamic Analysis

= Testing & Analysis Of Running Application
~r Find Input
~« Fuzz Input
-~ Analyze Response

= Commercial Web Scanners
= Cenzic
= SPIDynamics
= Watchfire

Current Practice

Most People Use Web Scanners Because...

= Easy To Run
= Fast To Run
= “‘Someone Told Me To”

Dynamic Analysis
Demo

Web Scanner Review

Good

= Found Real Vulnerabillities
= Was Easy To Run

“Did | Do A Good Job?”

Question 1: How Thorough Was My
Test?

Do You Know How Much Of Your
Application Was Tested?

Question 1: How Thorough Was My
Test?

How Much Of The Application Do You
Think You Tested?

Truth About Thoroughness

We ran a “Version 7.0 Scanner” on the
following:

Application EMMA Code Coverage Tool

HacmeBooks 34% classes
12% blocks
14% lines

JCVS Web 45% classes
19% blocks
22% lines

Java PetStore 2 70% classes
20% blocks
23% lines

Web Scanner Review
Good

= Found Real Vulnerabilities
= Was Easy To Run

Bad

r=n How Thorough Was My Test?
= No Way To Tell, And Actual Coverage Is Often Low

Ban
EaD

g

Question 2: Did I Find All
Vulnerabilities?

3 Ways To Falil
~n Didn’t Test
-« Tested — But Couldn’t Conclude
~<n Can’t Test

Question 2: Did I Find All
Vulnerabilities?

1. Didn’t Test

= |f The Web Scanner Didn’t Even Reach That

Area, It Cannot Test!

Tested

Vulnerabilities
Found

Vulnerabilities
Not Found

Question 2: Did I Find All
Vulnerabilities?

2. Tested, But Couldn’t Conclude

= Certain Classes Of Vulnerabilities Sometimes
Can Be Detected Through HTTP Response
= SQL Injection
= Command Injection
= LDAP Injection

Ipublic void doGet(HttpServletRequest req, HitpServietResponse res)
throws ServletException, IOException

{

ServletOutputStream out = res.getOutputStream();
String user = req.getParameter("user");
if(user = null) {
try {
String[] args = { "/bin/sh", "-c", "finger " + user };
Process p = Runtime.getRuntime().exec(args);
BufferedReader fingdata = new BufferedReader(new
InputStreamReader(p.getinputStream()));
String line;
while((line = fingdata.readLine()) != null)
out.printin(line);
p.waitFor();
} catch(Exception e) {
throw new ServiletException(e);
}

} else {
out.printin("specify a user");
}

public void doGet(HttpServietRequest req, HttpServietResponse res)
throws ServletException, IOException

{

ServletOutputStream out = res.getOutputStream();
String user = req.getParameter("user");
if(user != null) {
try {
String[] args = { "/bin/sh", "-c", “sendMail.sh " + user };
Process p = Runtime.getRuntime().exec(args);
p.waitFor();
} catch(Exception e) {

}

out.printin(*Thank you note was sent”);
} else {

out.printin("specify a user");
}

e.printStackTrace(System.err);

Question 2: Did I Find All
Vulnerabilities?

3. Can’t Test

= Some Vulnerabilities Have No Manifestation In
Http Response

Response

cC num
< HTTP

File Edit View Favorites Tools Help "

@Back M7 \ﬂ \g 5=

Address (&) http://news.com.com/TIX+says+45.7+milion+customer+records+were+compromised/2100-1029_3-6171671.html?tag=nefd.top v Go Links

Log in | Sign *

: . Jowe Adva
@ NEWS.com e O <. o
Today on CNET m News Tips & Tricks | CNET TV NFW ON €NF DIY Windows Vista proje:

Today on News | Business Tech | Cutting Edge | Access | Threats | Media 2.0 @ Markets @ Digital Life | Blogs | Extra | My News RSS

TJX says 45.7 million customer records were compromised

By Dawn Kawamoto
Staff Writer, CNET News.com
Published: March 29, 2007, 9:28 AM PDT

[7. TalkBack [4 E-mail [=)Print " delicio.us 57/ Digg this

w advertisement

TIX Companies said 45.7 million accounts were compromised over
nearly a two-year perigd=imsamundatetisdasadanaatan
investigation into a dat

Major credit card companies have launched security initiatives focused on
The scope of the breach,
wider than previously belil re€tailers. Store owners should not store card information, but Visa and
s ! MasterCard have found that many point-of-sale terminals and other
This is the largest securit

Avivah Litan, an analyst | transaction software store all the data anyway, sometimes unbeknownst

CardSystems where 40 to the retailer
like it was a case where t i

TJX, which operates such discount retail chains as T.J. Maxx and Marshalls
in the U.S., released additional details of the breach in a filing with the

Carnritiee and Fvrhanne Cammiccinn

- 7 @ Internet

Web Scanner Review
Good

= Found Real Vulnerabilities
= Was Easy To Run

Bad

~=n How Thorough Was My Test?

= No Way To Tell, And Actual Coverage Is Often Low
=an Did | Find All My Vulnerabilities?

= Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
EkaD
Bad

Question 3: Are All The Results
Reported True?

No Method Is Perfect

Under What Circumstances Do Web
Scanners Report False Positives?

= Matching Signature On A Valid Page
= Matching Behavior On A Valid Page

Question 3: Are All The Results
Reported True?

‘Matching Signature On A Valid Page

a LAB: SQL Injection - Microsoft Internet Explorer

File Edit View Favorites Tools Help

OBack v

€] http://localhost/WebGoat/attack?show=NextHint&menu=610

Compound SQL statemeiizs
and OR. Try appending i SQL statement That always resolves to true

Stage 1: Use String SQL Injection to bypass authentication. The goal here is to login as the user

Neville Bartholomew, who is in the Admin group. You do not have the password, but the form is SQL
injectable.

Goat Hills Financial

Hitrman DocAnirenc

&) Local intranet

Question 3: Are All The Results
Reported True?

Matching Behavior On A Valid Page

= “To determine if the application is vulnerable to SQL
Injection, try injecting an extra true condition into the
WHERE clause... and if this query also returns the
same ..., then the application is susceptible to SQL
injection” (from paper on Blind SQL Injection)

E.Q.
= http://www.server.com/getCC.jsp?id=5
= select ccnum from table where id='5’

= http://www.server.com/getCC.jsp?id=5" AND “1'="1
= select ccnum from table where id="'5" AND “1'="1"

Question 3: Are All The Results
Reported True?

E.Q.
= http://www.server.com/getCC.jsp?id=5

= select ccnum from table where id=‘5’

= Response:
“No match found” (No one with id “57)

= http://www.server.com/getCC.jsp?id=5" AND "1'="1
= select ccnum from table where id="5\" AND \"1\'=\"1’

= Response
“No match found” (No one with id “5" AND “1'="1")
All single quotes were escaped.
According To The Algorithm (“inject a true clause and
look for same response”), This Is SQL Injection
Vulnerability!

Web Scanner Review
Good

= Found Real Vulnerabilities
= Was Easy To Run

Bad

-~ How Thorough Was My Test?

= No Way To Tell, And Actual Coverage Is Often Low
-« Did I Find All My Vulnerabilities?

= Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
=<0 Are All The Results Reported True?

= Susceptible To False Signature & Behavior Matching

St

Question 4: How Do I Fix The
Problem?

Security Issues Must Be Fixed In Source Code

Information Given
= URL

= Parameter

= General Vulnerability Description
= HTTP Request/Response

But Where In My Source Code Should | Look
At?

Question 4: How Do I Fix The
Problem?

Incomplete Vulnerability Report -> Bad Fixes

Report:

= Injecting “AAAAA.....AAAAA” Caused Application To
Crash

Solution By Developers:

if (input.equals("AAAAA
return;

Web Scanner Review
Good

= Found Real Vulnerabilities
= Was Easy To Run

Bad
-~ How Thorough Was My Test?
= No Way To Tell, And Actual Coverage Is Often Low
-« Did I Find All My Vulnerabilities?
= Didn’t Test, Tested But Couldn’t Conclude, Can’t Test

~<~ Are All The Results Reported True?
= Susceptible To Signature & Behavior Matching

20 How Do | Fix The Problem?
. No Source Code / Root Cause Information

Attacking The Problems

White Box Testing With
Bytecode Injection

Agenda

Problems With Black Box Testing

= Approaches To Finding Security Issues
= 4 Problems With Black Box Testing

Solution:WhiteBox Testing With ByteCode Injection

= The Solution
= Demo Of Solution
= Building The Solution

QLY

Review...

and Proposal

P

How Will Monitors Solve The
Problems?

How Thorough Was
My Test?

Did | Find All My
Vulnerabilities?

Are All The Results
Reported True?

How Do | Fix The
Problem?

Monitors Inside Will Tell
Which Parts Was Hit

Monitors Inside Detects
More Vulnerabilities

Very Low False Positive
By Looking At Source Of
Vulnerabilities

Monitors Inside Can Give
Root Cause Information

How To Build The Solution

How Do You Inject The Monitors Inside
The Application?

Where Do You Inject The Monitors

Inside The Application”?

\What Should The Monitors Do Inside
The Application?

How Do You Inject The Monitors?

Problem: How Do You Put The Monitors Into The
Application?

Assumption: You Do Not Have Source Code,

Only Deployed Java / .NET Application

Solution: Bytecode Weaving

= Aspectd for Java
= AspectDNG for .NET

How Does Bytecode Weaving Work?

Original
.class

Similar process for .NET

How Does Bytecode Weaving Work?

List getStuff(String id) { List getStuff(String id) {
List list = new ArrayList(); List list = new ArrayList();
try { try {

String sql = “select stuff from String sql = “select stuff from
mytable where id=" + id + *7; mytable where id=" + id + 7,

JDBCstmt.executeQuery(sql); MyLibrary.doCheck(sql);
} catch (Exception ex) { JDBCstmt.executeQuery(sql);
log.log(ex); } catch (Exception ex) {
} log.log(ex);
return list; }
} return list;

Bytecode Injection Demo

Applying Byte-Code Injection To
Enhance Security Testing

How Do You Inject The Monitors Inside
The Application?

Where Do You Inject The Monitors
Inside The Application”?

\What Should The Monitors Do Inside
The Application?

Where Do You Inject The Monitors?

All Web Inputs (My Web Scan Should Hit All Of
Them)

= request.getParameter, form.getBean

All Inputs (Not All Inputs Are Web)

= socket.getinputStream.read

All “Sinks” (All Security Critical Functions)

= Statement.executeQuery(String)
= (FileOutputStream|FileWriter).write(byte[])

Applying Byte-Code Injection To
Enhance Security Testing

How Do You Inject The Monitors Inside
The Application?

Where Do You Inject The Monitors
Inside The Application”?

\What Should The Monitors Do Inside
The Application?

What Should The Monitors Do?

Report Whether The Monitor Was Hit

Analyze The Content Of the Call For
Security Issues

Report Code-Level Information About
Where The Monitor Got Triggered

What Should The Monitors Do?

aspect SQLInjection {
pointcut sqlExec(String sql):call(ResultSet Statement executeQuerv(

&& args(sql); 1) Report whether APl was hit or not

before(String sql) : sqlExec(sql) { lon(sql, thisJoinPoint); }
void checklnjection(String sql, Int thisdJoinPoint){
System.out.printin("HIT:*+

thisdJoinPoint.getSourcelocation().getFileName() +

thisJoinPoint.getSourcelLocation().getLine());
if (count(sql, \")%2 == 1) {

: ut.ErlntIn(SQ 3) Report Code-Level Information
being executed as fo + sql);

}

2) Analyze The Content Of The API Call

Proof Of Concept

Running The Custom Solution

With Additional Work on Ul

Coverage (Edit View)

‘ Web Attack Surface (28/45)

All Attack Surface (33/81)

All Sinks (28/150)

| Issues by Severity |

. -) M Cross-Site Scripting: 1 M Privacy Violation: 2
Critical High lledium :

O SQL Injection: 1 O Unhandled Exception: 1

Coverage

com.order.splc.CheckoutAction

java.lang.String
com.order.splc.CheckoutForm.getExpirationMon()

Suppress

com.order.sple.CheckoutAction

java.lang.String
com.order.splc.CheckoutForm.getCvv2()

Suppress

com.order.sple.CheckoutAction

java.lang.String
com.order.splc.CheckoutForm.getAddr()

Suppress

com.order.sple.CheckoutAction

java.lang.String
com.order.splc.CheckoutForm.getCcnum()

Suppress

com.order.splc.CheckoutAction

java.lang.String
com.order.splc.CheckoutForm.getName()

Suppress

com.order.splc.ListHelpAction

com.order.splc.Help
com.order.splc. AddHelpForm.getBean()

Suppress

com.order.splc.ListProfilesAction

com.order.splc.Profile
com.order.splc.AddProfileForm.getBean()

Suppress

com.order.splc.ListltemsAction

com.order.splc.Item
com.order.splc.AddItemForm.getBean()

Suppress

With Additional Work on Ul

Coverage (Edit View)

Web Attack Surface (28/45)

All Attack Surface (33/81)

All Sinks (28/150)

| Issues by Severity |

. -) M Cross-Site Scripting: 1 M Privacy Violation: 2
Critical High lledium :

O SQL Injection: 1 Unhandled Exception: 1

-

Security Issues Detail

Severity

critical

medium

medium

Category ‘
4 URL Path ¥ File Name ¥

SQL

<. sple/listMyltenfy’do | com.order.splc.ItemService
Injection

Privacy : st
rivacy /sple/listMylte ns.do | com.order.splc.ItemService
Violation
Privacy

e sple/finalCheckouto | com.order.splc.FinalCheckoutAction
Violation

Method Name ¥
ResultSet

Details

java.sql.Statement.executeQuery | View

(String)

void
java.util.logging.Logger.info
(String)

void
java.util.logging.Logger.info
(String)

Vigw

Security Issues Detail — SQL Injection

Description: Detected a SQL Injection issue using a comparison between a string literal and another literal (string or number)
Timestamp: 2007-03-29, 12:45:59:375

URL: http://localhost:8380/splc/listltems.do

Username: admin

Session ID: 18A736656EEB350CF019F0ES9739E11E

Referer: http://localhost:8380/splc/listltemsPage.do

User Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; NET CLR 1.1.4322; NET CLR 2.0.50727; InfoPath.1)

Trigger: Method Argument
Value:

select id, account, sku, quantity, price, ccno, description from item where sku = 'blah' or '1'='1' B

method: ResultSet java.sql.Statement.executeOQuerv(String)

Stack lc.ItemService.getItemList (ItemService.java:201)

Mimaider.splc. ListTtemsAction ., execute (I cids SN . java)
org.apache.struts.action.RegquestProcessor.processActionPerform (RequestProcessor.java)
org.apache.struts.action.RequestProcessor.process (RequestProcessor.java)

Trace:

Security Issue Detail — Privacy
Violation

Category: Privacy Violation

Subcategory: Credit Card Number

Description: The application attempted to log a credit card number
Timestamp: 2007-03-28, 18:55:04:718

URL: http://localhost:8380/sple/finalCheckout.do
Username: adam

Session ID: 994C64DA46CC34EFAF9F60BOE197A9CC
Referer:

User Agent: Al 0 (Compatible; MSIE 6.0; Windows NT .15

Trigger: Method Argument
Value:

User is attempting to checkout using CC number: 5424123412341234

method: void java.util.logging.Logger.info(String)

Conclusions — Web Scanners

Good

= Easy To Use
= Finding Smoking Gun

Bad

_ack Of Coverage Information

-alse Negative

-alse Positive

_ack Of Code-Level / Root Cause Information

Conclusions — White Box Testing

Bytecode Injection Require Access To
Running Application

In Exchange ...

= Gain Coverage Information

= Find More Vulnerabilities, More Accurately
= Determine Root Cause Information

Conclusions — Use Your Advantage

Attacker

Defender

Time

Attempts

Security
Knowledge

Access To
Application

Thank You

Questions?
= Email: tkureha at fortifysoftware.com

