

Duo Labs
Authors: Pepijn Bruienne (@bruienne), Rich Smith(@iodboi)

The Apple Of Your EFI: Findings
From an Empirical Study of EFI
Security

Research Questions & Objectives

In a modern system, the EFI (Extensible Firmware Interface) environment holds particular fascination for
security researchers and attackers due to the level of privilege it affords if compromise is successful. EFI is
often talked about as operating at privilege level ring -2, which indicates it is operating at a lower level than
both the OS (ring 0) and hypervisors (ring -1).

In a nutshell, this means that attacking at the EFI layer gives you control of a system at a level that allows you
to circumvent security controls put in place at higher levels, including the security mechanisms of the OS and
applications.

In light of recent public releases, there has been increased interest in the security of platform firmware. More
specifically, focus has centered on the security of a system’s UEFI (Unified Extensible Firmware Interface) due
to the availability of several publicly discussed exploits.

Our Hypotheses: Firmware Security Support and Visibility

The state of firmware security as it relates to software security was of particular interest. Our research started
with a working hypothesis that there is an asymmetric relationship between the security support vendors
provide in the form of patches to their software, as compared to their firmware.

We further hypothesized that both end users and admins make assumptions around the security support
provided by vendors to their firmware, while, at the same time, having limited visibility to the reality of the
security support actually received.

Finally, we suspected that there would be a divergence between the state of the EFI firmware deployed on
systems used in production environments and the expected state of the EFI firmware that should be running,
based on the system’s hardware and OS versions. The size and characteristics of this discrepancy, was,
however, something we were interested in investigating.

1

Our Research and Analysis: Why Apple?

Our research and analysis sought to shine light upon the security of Apple’s EFI environment, and to measure
the current security state of deployed EFI firmware as compared to the security state of deployed software.

The analysis we conducted focused on Apple’s Mac ecosystem. Apple’s control over the entire stack across
hardware, software, and firmware means its ecosystem provided a more manageable dataset to study.

Equally important is the fact that Apple releases its EFI firmware updates bundled within its OS updates and
installs them at the same time, meaning that we could build a definitive map of OS version to EFI version for
any given model of Mac hardware. The Wintel PC/OEM ecosystem is far more fragmented and complex in
terms of vendor responsibility for the security of the various components, making it more difficult to study
and derive conclusive results.

Our Findings: Expected vs. Actual EFI Versions

A significant finding of our research was the sizeable deviance between the EFI firmware versions running on
production systems and the expected versions based on the OS and hardware versions.

Apple’s approach of releasing EFI firmware updates as a component of its overall OS updates allowed us to
use the running build version of the OS and the hardware model of the Mac to predict, with certainty, the
version of EFI we would expect to be running. We then compared the expected EFI version to the actual EFI
version we found to identify discrepancies.

● Our analysis of 73,324 Macs deployed in production environments showed that, on average, 4.2% were
running versions of firmware that did not match the versions we would expect them to - which could
leave them open to publicly disclosed vulnerabilities.

● The level of discrepancy increased significantly above the mean for certain Mac models, with the highest
being 43.0% for the iMac 21.5” late 2015 model where 941 out of 2190 real world systems were running
incorrect versions of EFI firmware.

The size of this discrepancy is somewhat surprising, given that the latest version of EFI firmware should be
automatically installed alongside the OS updates. As such, only under extraordinary circumstances should
the running EFI version not correspond to EFI version released with the running OS version.

Software Secure But Firmware Vulnerable

Other notable findings detail the discrepancies between the different Mac models that receive software
security updates vs. firmware security updates from Apple. It appears that the eligibility for a system to
receive firmware updates is dependent on both the model of hardware as well as the version of the OS. This
creates multiple possibilities for a system to be seen as software secure but firmware vulnerable.

● 16 combinations of Mac hardware and OSs have never received any EFI firmware updates over the
lifetime of the 10.10 to 10.12.6 versions of OS X/macOS that we analyzed. They do, however, continue to
receive security updates from Apple for their OS and bundled software.

● 10 models of Mac received EFI updates in macOS 10.13.0, 10.13.1, and 10.12.6 Security Update 2017-001
did not receive corresponding EFI updates in OS X 10.11 El Capitan Security Update 2017-004.

2

● Put in terms of our real world dataset of 70,000+ systems, there were 3,400 (4.6%) systems identified that
are still considered supported by Apple and continue to receive software security updates, but have not
received EFI firmware updates.

As a result, those systems continue to be exposed to a number of publicly disclosed EFI vulnerabilities,
despite being patched against known public security vulnerabilities in the OS and bundled applications.

Compounding this situation is the lack of easily available information about which systems are currently
receiving software and/or firmware security updates from Apple, as we are unable to find any official
documentation pertaining to this anywhere. For users and administrators of Apple systems, this means it can
be difficult-to-impossible to accurately build a risk profile for their Apple infrastructure since they cannot
know which systems will be left exposed to EFI firmware vulnerabilities, or even which versions of firmware
contain which known vulnerabilities.

Our Dataset
Our data details the firmware security support provided by Apple based on an analysis of the security
updates they have released since 2015-01-27 and covers versions 10.10.0 to 10.13.1. As part of this work, we
will be making this data openly available to help admins and end users make more informed risk decisions
about the EFI firmware security of their Apple fleets.

This dataset also augments the gathered data with additional context, such as which vulnerabilities specific
EFI firmware versions are vulnerable to. We also intend to release RESTful APIs around the data alongside
client apps that can easily make use of them to allow admins and users gain more visibility into the state of
their fleets’ EFI firmware and make remediation recommendations.

Finally, it is important to note that we do not believe that the issues highlighted by our research are limited to
just Apple, and are in fact, indicative of industry-wide problems regarding the lower levels of security support
and visibility given by vendors to a system’s firmware security as compared to a system’s software security.
In fact, given the more fragmented and heterogeneous environment of the Wintel space, we would expect
the situation there to be potentially worse.

Summary Of Findings
The high level summary of the observations and findings are:

● On average, 4.2% of real-world Macs used in the production environments analyzed are running

an EFI firmware version that’s different from what they should be running, based on the

hardware model, the OS version, and the EFI version released with that OS version.

● The percentages of incorrect EFI versions varies greatly depending on the particular Mac model:

○ The late 2015 21.5” iMac has the highest occurrence of incorrect EFI firmware with 43%

of systems running incorrect versions.

○ This is followed by the 3 variants of the late 2016 13” MacBook Pro with rates of

deviance between 35% and 25%.

3

○ In fifth and sixth places came two variants of the early 2011 MacBook Pro showing a

deviance from expected EFI firmware versions of 15% and 12%.

● Variance from the expected EFI firmware versions is also markedly different across versions of

the OS:

○ macOS 10.12 (Sierra) had significantly higher average rate of deviance at 10%

○ This is followed by OS X 10.11 (El Capitan) with 3.4% and OS X 10.10 (Yosemite) with

2.1%

● The data we gathered suggests that there are possible underlying issues with the mechanisms

and procedures used by system administrators to update their fleets’ OSs that cause systems to

fail to update their firmware while successfully updating their OS. It is also not out of the

question that Apple’s EFI updating mechanisms themselves have an issue that cause EFI

updates to fail to install, though we have found no evidence indicating this during our analysis.

● An analysis of Apple’s update packages indicates that there are 16 Mac models that have not

received EFI firmware updates since Apple changed how it deploys the updates in any of

analysed OS and security updates despite being able to run one of the three most recent OS

versions that still receive software security updates from Apple. This means these systems can

be software secure but firmware vulnerable.

● Our analysis of the Apple OS updates that cite EFI security issues as part of the patch present

interesting data showing significant numbers of Mac models that do not actually have a patch

available to fix the known EFI firmware issues, despite continuing to receive OS and software

security updates:

○ Thunderstrike 1 (CVE-2014-4498) - 47 models capable of running 10.12, 10.11, 10.10

did not have an EFI firmware patch addressing this vulnerability released

○ Thunderstrike 2 (CVE-2015-3692, CVE-2015-3693) - 31 models capable of running

10.12, 10.11, 10.10 did not have an EFI firmware patch addressing this vulnerability

released

○ CVE-2015-4860 - 25 models capable of running 10.12, 10.11, 10.10 did not have an EFI

firmware patch addressing this vulnerability released

○ CVE-2016-7585 - 22 models capable of running 10.12, 10.11, 10.10 did not have an EFI

firmware patch addressing this vulnerability released; iMac version 16,2 was an

anomaly in that it did not receive an EFI update in Security Update 2017.001 for 10.11.x,

but did receive an update in OS update 10.12.4 - all comparable iMac models received

EFI firmware updates in updates for both 10.11 and 10.12

● Further analysis of Apple’s updates also highlighted what seems to be the erroneous inclusion

of 43 versions of EFI binaries in the 2017-001 security updates for 10.10 and 10.11 that were

older than the versions of EFI binaries that were released in the previous updates 2016-003

4

(10.11) and 2016-007 (10.10). This would indicate a regression or a release QA failing where

incorrect versions of EFI firmware were shipped in OS security updates.

● The identification of 18 Mac models with only one, two, or three low-numbered versions of EFI

firmware in the production dataset and no new EFI binaries in any of the analysed OS updates.

This strongly suggests that these models of Mac have never seen a field update of their EFI

firmware and continue to have the version they left the factory with.

● A variety of other more one-off anomalies and discrepancies within the large corpus of Apple

EFI-related data we have gathered, all of which raise questions about the level of QA being

afforded to these EFI firmware updates as compared to software security updates.

● The research also points to the lack of information and on-system support for EFI firmware

security given to Mac admins and users, despite the increasing number of publicly available

information and exploits for EFI attacks.

● Without exception, the Apple system admins who provided us the version data for their fleets

were very surprised by the EFI firmware discrepancies we discovered across their systems as

they have received no notification of those discrepancies from the fleet management systems

they use.

5

Document Versions

Date Version Notes

Sept 29 2017 1.0 Initial release of the paper at
Ekoparty 13

Nov 30 2017 1.1 Updates to cover macOS 10.13,
10.13.1, OS X 10.12.6 Security
Update 2017-001, and 10.11.6
Security Update 2017-004

6

Table of Contents

Research Questions & Objectives 1
Our Hypotheses: Firmware Security Support and Visibility 1
Our Research and Analysis: Why Apple? 2
Our Findings: Expected vs. Actual EFI Versions 2

Software Secure But Firmware Vulnerable 2

Our Dataset 3

Summary Of Findings 3

0. What is (U)EFI and Why Does its Security Matter? 9

1. A Brief History of Apple, EFI and Related Security Research 10
Using Apple’s EFI Implementation and Gaining Persistence 10
The Birth of ThunderStrike to Run Malicious Code 10
ThunderStrike 2 Less Hardware, More Viral 11
A New Exploit Toolkit Emerges: Sonic Screwdriver 11
Recent DMA Attacks 12

Changes for macOS 10.13 High Sierra 12
Support for MacPro (Mid-2010) 13
The introduction of eficheck 15
Our Commentary 15

2. How Does a Mac Update Its EFI Firmware and How Do You Find Your EFI Version? 16

3. EFI Updater Board ID Behavior 20
3.1. Reverse Engineering efiupdater: How Does It Pick An Eligible Firmware File? 20
3.2. Do EFI Firmware Updates Store A List of Board-ID Entries? 21
3.3. How efiupdater Handles EFI Firmware Updates for Macs Based on Their Board-ID 22

Results 23

4. The Initial Research Questions 23

5. The Research Methodology 24

6. Analyzing The Data, What Was Found? 27
6.1. Comparing the Running to the Expected Firmware Version, Based on the Current OS Patch Level 27

Factors Contributing to the Failure to Update EFI 28
6.2. Discrepancies in the Systems Receiving Firmware vs. Software Security Patches 29

Patch Protection Against ThunderStrike 1 & 2 30
6.3. Lack of Visibility, User Alerts and Mac Model/OS Inventory 31

6.4. Anomalies in Firmware Versions Suggest Incorrect Firmware May Have Shipped With Security Updates 31
6.5 - Public EFI Vulnerabilities and Associated Patch Releases 32
6.6 - Incorrect CVE Assigned to Unused EFI Functions 36

7

6.7. Miscellaneous and Interesting Anomalies in the Dataset 36
6.7.1. Mac Models With Multiple Observed Versions in Production but No Observed Efi Updates 37
6.7.2. An Anomaly in EFI Firmware Updates for Macbook Pros 37
6.7.3. EFI Update Filename Anomalies 38

7. Mitigations 38

Conclusion 39

Appendix A 42
Table 1. EFI Model ID to Apple Board ID Mapping 42
Table 2. Mapping of Mac Models Using EFI Firmware Files Named For Other Mac Models 43
Table 3. Breakdown of Systems Running Different-Than-Expected EFI Versions, Based on OS Version 44
Table 4. EFI Firmware for Security Update 2017-001, OS X 10.11 45
Table 5. EFI Firmware for Security Update 2017-001 for OS X 10.10 46
Table 6. EFI Versions Patched For the CVE-2014-4498 Vulnerability and Observed Anomalies 47
Table 7. EFI Versions Patched for CVE-2015-3692 & CVE-2015-3692 and Observed Anomalies 49
Table 8 - EFI Versions Patching the CVE-2015-4860 Vulnerability and Observed Anomalies 52
Table 9 - EFI Versions Patching the CVE-2016-7585 Vulnerability and Observed Anomalies 55
Table 10. Highest Released Versions of EFI Firmware, Segmented by Major OS Version and Mac Model 59
Table 11. Potentially Vulnerable Mac Models With Low Build Numbers 61

Appendix B 62

8

0. What is (U)EFI and Why Does its Security Matter?
UEFI stands for Unified Extensible Firmware Interface specification and has become the industry’s standard 1

replacement for the legacy BIOS platform that had been used, revised and held together with much string
and sticking tape since it was introduced by IBM in 1975. Both BIOS and UEFI bridge a system’s hardware,
firmware and OS together to enable it to go from power-on to booting the operating system. The
development of the UEFI standard helped address a number of technical limitations of the legacy BIOS
introduced so many years ago. 2

It also helped the industry move away from the largely proprietary and incompatible implementations that
the legacy BIOS had devolved into. In many regards, the adoption of UEFI enabled modern system paradigms
developed elsewhere in systems engineering over the preceding 40 years to be applied to the pre-boot
environments of PC systems, supporting more ubiquitous and modular approaches to be taken.

Such standardization has numerous advantages to OEMs, as well as to hardware and software vendors
through the lowering of development and support costs - however, it is also worth recognizing that malicious
actors looking to attack systems also benefit from lower costs of development and deployment that a
standards-based system presents. The previously highly fragmented and system-specific environment of the
legacy BIOS has now been flattened out into a standards-based pre-boot environment that is common across
different platforms and architectures. What had previously required very targeted attacks has now become
one where the same vulnerabilities and capabilities can be used across large populations of devices.

Aside from the standardization of systems, attacking UEFI implementations is attractive to security
researchers due to the level of privilege and stealth it affords an adversary who is successful in their
exploitation. The UEFI environment provides a somewhat unique vantage point in terms of system attacks
that is often referred to as Ring -2 to indicate how they operate at a level that is below both the OS (Ring 0)
and the hypervisor/VMM (Ring -1) and, as such, can undermine the security controls in both.

Successful attack of a system’s UEFI implementation provides an attacker with powerful capabilities in terms
of stealth, persistence, and direct access to hardware, all in an OS and VMM independent manner. While a
detailed discussion of these capabilities is beyond the scope of the background section of this paper, a
number of references are given for the interested reader to find out more. 3 4 5

The point we want to ensure all readers have in mind as we discuss the research in this paper is that for a
modern computer system to be considered secure, it is not enough to just focus on the security and
up-to-dateness of the OS and software. One also needs to consider the security of the pre-boot environment,
which, in a majority of cases, means UEFI. The unfortunate truth is that insecure UEFI can undermine all of

1 "Specifications and Tools | Unified Extensible Firmware ... - UEFI Forum."
http://www.uefi.org/specsandtesttools. Accessed 1 Sep. 2017.

2 "Beyond BIOS | Intel® Software." https://software.intel.com/en-us/articles/beyond-bios. Accessed 1 Sep.
2017.

3 "IntroBIOS - Open Security Training." 14 Oct. 2015, http://opensecuritytraining.info/IntroBIOS.html.
Accessed 1 Sep. 2017.

4 "GitHub - advanced-threat-research/firmware-security-training."
https://github.com/advanced-threat-research/firmware-security-training. Accessed 1 Sep. 2017.

5 "BIOS Necromancy: Utilizing “Dead Code” for BIOS Attacks - LegbaCore." 14 Oct. 2015,
http://www.legbacore.com/Research_files/BIOSNecromancy.pdf. Accessed 1 Sep. 2017.

9

http://www.uefi.org/specsandtesttools
https://software.intel.com/en-us/articles/beyond-bios
http://opensecuritytraining.info/IntroBIOS.html
https://github.com/advanced-threat-research/firmware-security-training
http://www.legbacore.com/Research_files/BIOSNecromancy.pdf

the security put in place at the layers above it in the VMM, OS, and applications. Despite the critical nature of
the security of UEFI, it is an area that can often be overlooked by both vendors, admins and end users, and it
is for these reasons we took the time to evaluate the security support and awareness of a popular UEFI
environment.

Note: While in the above discussion the term ‘UEFI’ is used to refer to the pre-boot environment, throughout
the rest of the paper the abbreviated term ‘EFI’ is used. The reasons for this are not only to aid readability,
but also in recognition that Apple refers to it’s pre-boot environment as ‘EFI’ in all of its documentation.
Likewise, many contemporary papers released on similar security topics also use ‘EFI’ in favor of the ‘UEFI’
acronym and it feels appropriate to follow their lead in this regard.

1. A Brief History of Apple, EFI and Related Security Research
The importance of ensuring that up-to-date EFI firmware is installed on Macs is well-known among security
experts, however, outside of the security scene, this knowledge may be less common. As such, before we
jump into the research itself, we thought it useful to give a little history of the security research done on
Apple’s EFI-enabled platforms, discussing a number of high-profile EFI vulnerabilities and their
accompanying exploits that have been publicly disclosed. If you are already familiar with both the security
history and mechanisms involved with Apple’s EFI, then jump to Section 6 to see our new findings.

Using Apple’s EFI Implementation and Gaining Persistence

In 2012, Loukas K, better known as “snare,” presented EFI-related research at the 12th annual Black Hat USA
conference in Las Vegas. In his research, he outlined the process of finding vulnerabilities in Apple’s EFI 6

implementation and presented a number of ways to use these vulnerabilities to gain persistence.

The two most promising, and therefore most concerning, methods of gaining persistence identified by snare
included:

● Using PCIe option ROMs on external peripherals to inject and run malicious code in the EFI environment.
● Re-flashing the EFI firmware from userland with a modified version that enables malicious code to

survive complete OS reinstalls.

6 "assurance - Black Hat."
https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Job
sivs_Slides.pdf. Accessed 1 Sep. 2017.

10

https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Jobsivs_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Jobsivs_Slides.pdf

The Birth of ThunderStrike to Run Malicious Code

The work done by snare was expanded upon in 2014 by Trammell Hudson of Two Sigma who presented at
the 31st edition of the Chaos Computer Club Conference (or 31c3). Hudson took both the PCIe option ROM 7 8

and firmware flash research done by snare and was able to create a PoC (proof of concept) combining
hardware and software, using an Apple Thunderbolt to Ethernet adapter, which he named ThunderStrike.

The adapter contained modified firmware code that, when connected to a vulnerable Mac, performed an EFI
flash rewrite with modified firmware that allowed the attacker to run arbitrary code at the Ring -2 level while
at the same time “fixing” Apple’s vulnerable code and effectively closing the door behind itself, preventing
further exploitation.

This facilitated simple “evil maid” or physical drive-by attacks where an attacker with a modified adapter
would be able to plug it into a target system, perform a forced reboot, wait, unplug the adapter and walk
away knowing that the target Mac had been successfully compromised with permanently modified EFI
firmware. Apple first addressed the PCIe option ROM vulnerability in the OS X 10.10.2 and Security Update
2015-001 for OS X 10.9.5 as CVE-2014-4498. 9 10

ThunderStrike 2 Less Hardware, More Viral

Following up his earlier work, Trammell Hudson then partnered with Xeno Kovah and Corey Kallenberg of
LegbaCore at DEF CON 23 in 2015 to present ThunderStrike 2. This improved version of the original 11

ThunderStrike PoC combined a number of previously disclosed vulnerabilities to enable attacking the EFI
firmware without the need for a physical adapter to be used, while, at the same time, adding the ability to
further infect any attached Thunderbolt devices in order to virally spread the exploit to other targets.

The main vulnerabilities used in ThunderStrike 2 were patched by Apple in the OS X 10.10.4 update and
Security Update 2015-005 on 06/30/2015, as CVE-2015-3692 and CVE-2015-3693. 12 13

7 "Thunderstrike 31c3 - Trammell Hudson's Projects." 15 Feb. 2015, https://trmm.net/Thunderstrike_31c3.
Accessed 1 Sep. 2017.

8 "Thunderstrike FAQ - Trammell Hudson's Projects." 31 Jan. 2015, https://trmm.net/Thunderstrike_FAQ.
Accessed 1 Sep. 2017.

9 "apple-sa-2015-01-27-4 - Apple - Lists.apple.com."
https://lists.apple.com/archives/security-announce/2015/Jan/msg00003.html. Accessed 1 Sep. 2017.

10 "CVE - CVE-2014-4498." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498. Accessed 1 Sep.
2017.

11 "Thunderstrike2 details - Trammell Hudson's Projects." 14 Aug. 2015,
https://trmm.net/Thunderstrike2_details. Accessed 1 Sep. 2017.

12 "CVE - CVE-2015-3692." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692. Accessed 1 Sep.
2017.

13 "CVE - CVE-2015-3693." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693. Accessed 1 Sep.
2017.

11

http://searchsecurity.techtarget.com/definition/evil-maid-attack
https://trmm.net/Thunderstrike_31c3
https://trmm.net/Thunderstrike_FAQ
https://lists.apple.com/archives/security-announce/2015/Jan/msg00003.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498
https://trmm.net/Thunderstrike2_details
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693

A New Exploit Toolkit Emerges: Sonic Screwdriver

Related to these two major PoCs, it was revealed in March 2017 that as part of the alleged CIA “Vault 7” leaks
released by Wikileaks, a very similar exploit toolkit had existed even prior to Hudson’s and snare’s work,
dubbed “Sonic Screwdriver.” 14

This exploit toolkit has been shown to have used the same vulnerabilities that have been publicly discussed
in order to implement CIA-created payloads such as the one contained in the same leaked documents named
“DerStarke.” These tools are thought to have been developed as early as 2013, and quite possibly earlier. 15

Recent DMA Attacks

Security researcher Ulf Frisk published his findings related to using the PCIe bus to perform DMA (Direct
Memory Access) attacks on Mac firmware using an external device, once again leveraging unpatched 16 17

vulnerabilities in Apple’s EFI to gain access to sensitive data such as Filevault 2 (FDE) decryption passphrases.

Changes for macOS 10.13 High Sierra
With the release of macOS 10.13 High Sierra Apple shipped the largest-ever number of EFI updates in a single
OS update. The reason behind the large number of changed EFI firmware payloads is because Apple changed
the default filesystem in macOS 10.13 from HFS+ (Mac OS Extended) to APFS as was announced during
WWDC 2017. In order for the early boot environment to be able to mount an APFS volume a “ApfsJumpStart”
DXE driver was added to Apple’s EFI environment. Apple’s High Sierra system requirements also meant that a
number of older Mac models that had not received any EFI updates bundled with an OS or security update
now received their first EFI firmware update. The newly-added models are:

● iMac (Late 2009) aka iMac10,1

● MacBook (Late 2009) aka MacBook6,1

● Mac Pro (Mid-2010) aka MacPro5,1

Possibly because of the issues with EFI update reliability outlined elsewhere in this paper Apple started to
release versions of APFS-capable EFI firmware for some models with the last two macOS 10.12 Sierra point
updates, 10.12.5 and 10.12.6. By “pre-seeding” the EFI updates prior to the High Sierra release Apple's
intentions may have been to reduce the chance of failed EFI upgrades causing issues for its customers.
In contrast to this we noted a difference in supported models for macOS 10.11 El Capitan. There are 10 Mac
models that did not receive EFI updates in the 10.11 Security Update 2017-003 whereas they did receive them

14 "WikiLeaks - Sonic Screwdriver." https://wikileaks.org/vault7/document/SonicScrewdriver_1p0/. Accessed
1 Sep. 2017.

15 "WikiLeaks - DerStarke v1.4." https://wikileaks.org/vault7/document/DerStarke_v1_4_DOC/. Accessed 1
Sep. 2017.

16 "presentations/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel"
https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-K
ernel-Final.pdf. Accessed 1 Sep. 2017.

17 "Security | DMA | Hacking: macOS FileVault2 Password Retrieval." 15 Dec. 2016,
http://blog.frizk.net/2016/12/filevault-password-retrieval.html. Accessed 1 Sep. 2017.

12

https://wikileaks.org/vault7/document/SonicScrewdriver_1p0/
https://wikileaks.org/vault7/document/DerStarke_v1_4_DOC/
https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel-Final.pdf
https://github.com/ufrisk/presentations/blob/master/DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel-Final.pdf
http://blog.frizk.net/2016/12/filevault-password-retrieval.html

in macOS 10.12.5, 10.12.6 and macOS 10.13. This can be seen as indicating both good and bad news. The
good being that it appears that Apple are keeping the EFI updates distributed with macOS 10.12 security
updates and macOS 10.13 OS updates in lock-step which significantly improves the divergent state of
previous OS and Security update cycles. The bad news comes in the form that OS X 10.11 looks like it will
continue to have discrepancies in the versions of EFI being released for it as compared to newer versions of
the OS and have certain Mac models that perpetuate the possibility of systems being software secure but
firmware vulnerable.

The ten models of Mac that saw EFI updates in the 10.13 and 10.12 OS branches but didn’t see EFI updates in
10.11.6 Security Update 2017-004 are:

● IM181
● IM183
● MB101
● MBA31
● MBP131
● MBP132
● MBP133
● MBP141
● MBP142
● MBP143

From a version nomenclature standpoint Apple appears to have adopted a slightly different strategy with the
EFI firmware updates released since 10.13. Apple now appears to follow a versioning strategy where they are
increasing the four-digit version string and mostly leaving the build (BXX) string at B00, this is in contrast to
the previous approach of the four digit version remaining constant and the build number being incremented.
We still noticed a number of endianness problems with the build string despite this, as EFI payloads for the
following models show:

● IM101_00CF_00B
● IM111_0037_00B
● IM112_005B_00B
● IM121_004D_00B
● MB61_00CB_00B
● MB71_003D_00B
● MBA31_0067_00B
● MBP61_005A_00B
● MBP71_003D_00B
● MBP81_004D_00B
● MM41_0045_00B

As more updates are released in the 10.13 branch and the security updates of 10.12 and 10.11 we will have
more data points to see what the new normal is in terms of EFI version strings, however early indications are
that the build numbers are less important than they were prior to 10.13 and it is the 4 digit version that we
will see incrementing over the releases.

13

Support for MacPro (Mid-2010)

As noted, one of the models that received its first EFI update since Apple changed the deployment method is
the Mac Pro (Mid-2010) or as we will refer to it from here on, the MacPro5,1. It is unclear whether Apple
decided not to ship any EFI updates because this model requires following the manual process as outlined
earlier or because of other internal reasons. Yet because APFS support in EFI is a requirement for macOS
10.13 Apple had no choice but to update the firmware of the MacPro5,1 which is still very popular with
professional users in the graphic design and audiovisual fields. The way Apple managed to support this Mac
model is interesting and worth discussing.

Apple implemented the required manual update for the MacPro5,1 through a plugin for the macOS
InstallAssistant which is the executable that runs after the user downloads and runs “Install macOS High
Sierra” from the Mac App Store. During the program flow InstallAssistant performs the following calls and
branches on any MacPro5,1 that requires the EFI update:

● Calls apfsSupportedByROM to determine target’s APFS capability, returns false

● Calls dataForNVRAMKey and reads

"4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures" which returns

the current EFI version

● Calls isLatestEFIForK5B which compares the EFI version retrieved from the previous step

○ The name of the procedure references an internal codename for the MacPro5,1, “K5B”

● Calls isEqualToString which compares the host EFI version to "MP51.0082.B00", returns

true

● Calls beginLegcayFirmwareUpdate

● Instantiates the external LegacyFirmware.bundle plugin found in /Applications/Install

macOS High Sierra.app/Contents/Plugins

● Calls LFFirmwareUpdateWindowController which shows a dialog informing the user of

the firmware update requirement

● Prompts user to click “Shutdown” in the InstallAssistant LegacyFirmware plugin UI

● Waits for [LFFirmwareUpdateWindowController shutdownClicked]

● Instantiates and allocates OSISClient

● Calls [OSISClient stageLegacyFirmwareUpdateWithOptions:]

● Establishes XPC connection to osishelperd which is a privileged helper process that runs

alongside InstallAssistant

● Calls [OSISHelper stageLegacyFirmwareUpdateWithReply:]

● Locates *.efi, *.fd and *.crc32 files in /Applications/Install macOS High

Sierra.app/Contents/Resources/Firmware

● Calls NSTask to make a system call:

○ /usr/sbin/bless -mount / -firmware EfiUpdaterApp2.efi

14

http://appleinsider.com/articles/12/06/07/new_mac_pros_rumored_with_8_core_xeon_e5_cpus_thunderbolt_usb_30

-payload MP51_0083_00B_LOCKED.fd -options -x

efi-apple-payload0-data <contents of *.crc32 file> --verbose

● System shuts down

● As instructed, the user must now hold down power button and wait for sustained beep,

firmware update commences

We performed a brief comparative analysis of the updated MacPro5,1 firmware and determined that outside
of the ApfsJumpStart and PchResetRuntime DXE code additions no other changes were present. This implies
that Apple did not include any of the security patches that were released for other Mac models and only
included the EFI functionality needed to be able to boot from an APFS volume.

The introduction of eficheck

A new EFi-focused tool called eficheck also shipped with macOS 10.13. The eficheck tool runs as a
scheduled system daemon but can also be invoked manually from the command line. It uses a library of
Apple-curated whitelists to compare the active EFI firmware version to that of known-good versions. The
tool’s intention is to alert the end user if an unknown EFI version is found and to offer the option to submit
the information to Apple. Based on our use of eficheck we can say that it only performs integrity checks
and it does not alert users to out-of-date versions of running EFI firmware.

A perspective on eficheck

While not exhaustive, the above illustrates that both public and private research into EFI security, and how to
exploit any vulnerabilities found, has been actively pursued by a range of organizations for at least the last
five years and likely quite a while longer.

Even though the volume of EFI vulnerabilities is nowhere near as high as for software-based vulnerabilities,
the threats are real and carry with them some extra complexity given the system layer being attacked is
below the OS’s kernel (Ring 0), making it inherently hard to detect the presence of any firmware-based
compromise and harder to remove.

When taken in combination with the generally low level of knowledge most admins and users have about the
role of EFI in their systems as compared to the OS and applications, alongside the lack of visibility to the
‘up-to-dateness’ of the installed EFI firmware, we quickly get to a point where the majority of Apple
consumers need to rely on Apple to take full responsibility for ensuring their EFI firmware is patched against
the latest vulnerabilities.

Apple has made obvious efforts in trying to make the updates of EFI firmware something that admins and
users don’t have to consider separately and we think this is an approach that adds significant security to Mac
systems. As of OS X 10.10, Apple has consistently bundled EFI firmware updates with the OS and security
updates themselves, instead of as a separate update with its own installer, improving the likelihood that
important EFI security patches are actually applied.

To offer some background on this, it is important to know how EFI firmware updates were treated prior to
2015. Before then, EFI firmware updates were distributed separately and they required manual intervention

15

on each Mac in order to boot into a dedicated EFI firmware update mode. This process was 18

end-user-unfriendly and labor-intensive for Mac admins who were in charge of many hundreds or thousands
of Macs.

As a result, the EFI firmware updates would often be skipped and, because there had been no major public
security vulnerabilities prior to 2015, they were mostly ignored. The laissez-faire attitude was finally
shattered when Thunderstrike 1 was published which seemed to force Apple’s hand to make changes in
order to ensure that EFI firmware updates deploy alongside OS and security updates.

2. How Does a Mac Update Its EFI Firmware and How Do You Find Your EFI Version?

Warning! Running some of the commands seen below could result in bricking your Mac. This data is

included for background and completeness, but we do not encourage messing with your EFI firmware

unless you know how to recover, should an error occur. Consider yourselves duly warned!

While the standard route by which Apple’s Mac EFI firmware gets installed alongside an OS update is
deliberately invisible to the end user, it is still worth understanding the process by which EFI firmware is
updated so we can understand the EFI lifecycle in more detail. This also allows for manual intervention as
needed. There doesn’t appear to be any official Apple documentation on the technical details of the EFI
update process, so what is found in this and the following sections is a combination of what was learned as
the research was conducted, as well as what we learned from other sources of information we found in
research released by others.

Mac EFI Firmware Installation

Within an Apple OS update, there is a FirmwareUpdate.pkg bundle to install EFI firmware containing a
postinstall action shell script located at FirmwareUpdate.pkg/postinstall_actions/update
which triggers the firmware installation. The content of the shellscript shows the two main actions taken to
update the firmware:

#!/bin/sh

/usr/libexec/FirmwareUpdateLauncher -p "$PWD/Tools"

/usr/libexec/efiupdater -p "$PWD/Tools/EFIPayloads"

 Figure 1 - Contents of the FirmwareUpdate.pkg/postinstall_action/update shell script

The script shows two separate updaters being ran: /usr/libexec/FirmwareUpdateLauncher and
/usr/libexec/efiupdater. FirmwareUpdateLauncher seems to be a multi updater that is able to
update pretty much all the other non-EFI firmware in a modern Mac system such as the SMC, SSD, and USB-C
controllers.

18 "About EFI and SMC firmware updates for Intel-based ... - Apple Support." 4 May. 2016,
https://support.apple.com/en-us/HT201518. Accessed 1 Sep. 2017.

16

https://support.apple.com/en-us/HT201518

Such hardware can also have EFI elements to enable the installation process for other firmware (e.g. like
MultiUpdater.efi and ThorUtil.efi), but these EFI components are out of scope for the discussion of
core EFI updates themselves. For the sake of this paper, we will focus on efiupdater,as that is the binary that
is responsible for updating the EFI.

While the efiupdater binary is not well documented, it’s relatively easy to reverse engineer how it works (see
also Section 3. EFI updater board ID behavior). The method used in the postinstall script simply calls the binary
with a ‘-p’ argument and the path to a directory containing all of the EFI firmware updates within an OS update.
The determination of which update is the correct one to install on a system is made by the efiupdater binary
itself, and is based on the board ID of the Mac running the command and the board ID(s) contained in the
firmware binaries themselves. There doesn’t appear to be a way to direct the efiupdater to install a single EFI
update - it wants a whole directory to pick from.

The efiupdater binary needs to be run as root and takes care of all of the steps of copying the EFI update
where it needs to go as well as blessing it, it’s a one stop and simple way to update the EFI firmware. Example 19

output from running this command is given in Figure 2:

bash-3.2# /usr/libexec/efiupdater -p ~/FirmwareUpdatesTest/
Raw EFI Version string: MBP111.88Z.0138.B18.1702171721
EFI currentVersion: [0000000001380018]
EFI updateVersion: [0000000001380021]
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
Aggregate boot path is IODeviceTree:/PCI0@0/RP06@1C,5/SSD0@0/PRT0@0/PMP@0/@0:2
GPT detected
Booter partition required at index 3
System partition found
Booter partition found
Preferred system partition found: disk0s1
Returning booter information dictionary:
<CFBasicHash 0x7f99db7002a0 [0x7fffbe787da0]>{type = mutable dict, count = 3,
entries =>
 0 : <CFString 0x1063d8a60 [0x7fffbe787da0]>{contents = "System Partitions"} = (
 disk0s1
)

 1 : <CFString 0x1063d9240 [0x7fffbe787da0]>{contents = "Data Partitions"} = (
 disk0s2
)

 2 : <CFString 0x1063d9260 [0x7fffbe787da0]>{contents = "Auxiliary Partitions"} =
(

 disk0s3
)

}

19 "bless Man Page - macOS - apple.com."
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/bless.8
.html . Accessed 1 Sep. 2017.

17

https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/bless.8.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/bless.8.html

Substituting ESP disk0s1
Mounting at /Volumes/bless.lFhE
Executing "/sbin/mount"
Returned 0
Creating /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE if needed
Deleting previous contents of /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE
Deleting /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE/MBP111_0138_B18_LOCKED.scap (8520304
bytes)

Opened dest at /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap
for writing
preallocation not supported on this filesystem for
/Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap

/Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap created
successfully

Relative path of /Volumes/bless.lFhE/EFI/APPLE/FIRMWARE//MBP111_0138_B21_LOCKED.scap
is \EFI\APPLE\FIRMWARE\MBP111_0138_B21_LOCKED.scap
IOMedia disk0s1 has UUID A99B4ECD-E003-4057-9F8F-9E27F4CFB546
Executing "/sbin/umount"
Returned 0
Write to RTC: 0
Setting EFI NVRAM:
<CFBasicHash 0x7f99db405420 [0x7fffbe787da0]>{type = mutable dict, count = 1,
entries =>
 2 : <CFString 0x1063d8aa0 [0x7fffbe787da0]>{contents = "efi-apple-recovery"} =
<CFString 0x7f99db700e70 [0x7fffbe787da0]>{contents =
"<array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>IOMedia</stri

ng><key>IOPropertyMatch</key><dict><key>UUID</key><string>A99B4ECD-E003-4057-9F8F-9E2

7F4CFB546</string></dict></dict><key>BLLastBSDName</key><string>disk0s1</string></dic

t><dict><key>IOEFIDevicePathType</key><string>MediaFilePath</string><key>Path</key><s

tring>\EFI\APPLE\FIRMWARE\MBP111_0138_B21_LOCKED.scap</string></dict></array>"}

}

Background color default set successfully

Figure 2 - Output from running the efiupdater application

The efiupdater will only attempt to upgrade an EFI firmware that is newer than the firmware that it detects
you are currently running. If an older firmware update is detected, it just prints out the version strings and exits
with a return code of 1.

Raw EFI Version string: MBP111.88Z.0138.B25.1702171721
EFI currentVersion: [0000000001380025]
EFI updateVersion: [0000000001380021]

There is a ‘--force-update’ switch to the efiupdater that causes versions to be ignored, meaning that
older versions of firmware can be set for installation upon the next reboot, while the older firmware can be set up
for installation; whether a downgrade actually occurs is down to the checks enforced by the currently running EFI

18

firmware. During our research, we found no situation where Apple’s EFI allowed downgrades to occur. Shortened
output from using the switch is below and shows that the EFI currentVersion has been nulled out to pass the
version check:

/usr/libexec/efiupdater -p ~/FirmwareUpdatesTest/ --force-update
EFI currentVersion: [0000000000000000]
EFI updateVersion: [0000000001380021]
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
...

...

Once the efiupdater command has run, you can inspect that the EFI file has been copied to the EFI partition
and has been blessed by running the following commands:

#Mount the EFI partition
bash-3.2# mount -tmsdos /dev/disk0s1 /tmp/efi
#Look at the contents of the FIRMWARE directory
bash-3.2# ls /tmp/efi/EFI/APPLE/FIRMWARE/
MBP111_0138_B21_LOCKED.scap

This shows the EFI update has been copied to the EFI partition. The following command shows the protected
nvram variable that has been set by the bless command that causes the EFI update file that has been copied to
the partition to be flashed during recovery mode boot. Manually trying to set the nvram variable always fails.

bash-3.2# nvram -px efi-apple-recovery
<output redacted>

efi-apple-recovery

<array><dict><key>IOMatch</key><dict><key>IOProviderClass</key><string>IOMedia

</string><key>IOPropertyMatch</key><dict><key>UUID</key><string>C7BE0AAC-8FB7-

4C11-BF3C-B988FD479B24</string></dict></dict><key>BLLastBSDName</key><string>d

isk0s1</string></dict><dict><key>IOEFIDevicePathType</key><string>MediaFilePat
h</string><key>Path</key><string>\EFI\APPLE\FIRMWARE\MBP111_0138_B21_LOCKED.s
cap</string></dict></array>%00

As can be seen in the green above, the efi-apple-recovery nvram variable has been set to a plist type
structure containing the path to the EFI update file located on the partition we previously observed.

In all our tests using the ‘--force-update’ switch, there appears to be another level of checking that takes
place within Apple’s pre-boot EFI environment that prevents rollback to an older version of EFI. While the EFI
update process has been set up by the OS, a reflash never takes place in the pre-boot update environment.

Now that we understand how Apple’s EFI updater works, we can recreate the main steps of blessing a new EFI
update manually with the following command that makes use of the undocumented -firmware switch to the
bless command. It is also important to use the -recovery switch as, without that, the bless command fails
with the error ‘Could not set boot properties: 0xe00002bc Error while writing firmware updater for EFI.’

19

bless -mount / -firmware ~/Desktop/MBP111_0138_B21_LOCKED.scap --verbose --recovery
EFI found at IODeviceTree:/efi
Will need to copy 8523776 bytes to EFI system partition
Aggregate boot path is IODeviceTree:/PCI0@0/RP06@1C,5/SSD0@0/PRT0@0/PMP@0/@0:2
GPT detected
...

...

<output redacted>

Much of the output from this command is the same as the output you see when you run the efiupdater
command as it just calls bless directly after doing a variety of checks and validations.

This concludes the whistle-stop overview of how Apple updates EFI firmware and provides you the tools to take
control of updating EFI firmware manually, should you desire.

3. EFI Updater Board ID Behavior
While most Mac models have a one-to-one relation with the physical EFI firmware upgrades, some models do not
have a dedicated named upgrade file associated with them. Examples of such models are the MacBookPro11,3
and MacBookPro11,5 as well as a few others (see Table 2 in Appendix A for a full list).

Throughout our dataset, we observed that the entries for these models appeared to be using the same EFI
firmware as that of the previous model in the range, i.e. MacBookPro11,3 received MacBookPro11,2 firmware,
while MacBookPro11,5 received MacBookPro11,4 firmware. While this seemed somewhat logical considering the
MBP11,3 and MBP11,5 models were very minor revisions to the model line, we wanted to better understand the
process that determines what EFI firmware version these "orphaned" models are assigned.

3.1. Reverse Engineering efiupdater: How Does It Pick An Eligible Firmware File?

As already discussed, the EFI upgrade is initiated by /usr/libexec/efiupdater by enumerating a target
folder containing EFI firmware updates and selecting an eligible firmware file to perform an update with. If the
target folder does not contain an eligible firmware upgrade file because no compatible and/or newer version was
found, the tool takes no action. We decided to reverse engineer efiupdater in order to understand how it picks
eligible firmware. Here’s a summary of that work:

When efiupdater runs, it checks for the presence of two possible option flags: -p (payload) and
--force-update. When no option flags are provided, the tool simply prints the currently installed EFI
firmware version to stdout; both as a simplified string and as a raw version string:

Raw EFI Version string: MBP133.88Z.0226.B23.1704201604

EFI currentVersion: [0000000002260023]
EFI updateVersion: [0000000000000000]

20

When run with the -p flag, a path containing one or more EFI firmware update files is expected and the tool
iteratively inspects them, looking for a compatible update:

/usr/libexec/efiupdater -p ~/Documents/EFI/MacBookPro/

Raw EFI Version string: MBP133.88Z.0226.B23.1704201604

EFI currentVersion: [0000000002260023]
EFI updateVersion: [0000000002230000]

In the above example, an EFI firmware update file compatible with the model the tool was run on was found but
its version (EFI updateVersion) was older than what is currently installed (EFI currentVersion). This means no
update would be possible since efiupdater does not allow downgrading. The force flag can be used, and while
this will cause the EFI update to be copied to the correct partition and the nvram variables to be set, a reflash
does not occur in the pre-boot EFI environment as the currently running EFI firmware does not allow
downgrading.

After disassembling efiupdater, we found the option flag handling in the main() function together with a
number of other functions that made it clear how the tool determines model eligibility. As part of the code that
handles the force flag, a subroutine creates a force-efi-update property in the “option” IORegistry
realm using IORegistryEntryCreateCFProperty, which results in an nvram variable that is read at boot
time and initiates the EFI firmware update.

Next, a subroutine uses IORegistryEntrySearchCFProperty to search IORegistry for two properties:
board-id and board-rev. The board-id property is an internal Apple identifier that uniquely labels a Mac
model in a way that the more generic model identifier can not. The board-id is formatted as Mac-<8 byte
hex value> and can be retrieved from the command line using this command:

$ ioreg -p "IODeviceTree" -r -n / -d 1 | perl -n -e
'/board-id.*\<\"(.*)\"\>.*/ && print "$1\n"'

Mac-A5C67F76ED83108C

3.2. Do EFI Firmware Updates Store A List of Board-ID Entries?

To our knowledge, the board-rev property is rarely used outside of Apple, so we concluded that, in most cases,
the board-id would be the logical identifier for efiupdater to use for determining eligibility. The question was
then: do EFI firmware updates store a list of compatible board-id entries that tell efiupdater whether a Mac
model is compatible or not?

To answer this, we decided to take a look at the firmware for a model which we knew was found to be installed
for more than one model: MacBookPro11,4. We had observed this version of firmware also being installed on the
MacBookPro11,5 so our first task was to determine the board-ids for the MacBookPro11,4 and MacBookPro11,5.

21

22

Luckily, there are multiple online sources that have complete lists of board-id to Mac model mappings. We
determined that MBP115 has the board-id Mac-06F11F11946D27C5, while MBP114 has
Mac-06F11FD93F0323C5. Our next step was to load an EFI firmware update for the MBP114 in UEFITool and 20

perform a hex string search for the hex component of the board-id for both models.

As expected, we found single entries for both 06F11F11946D27C5 and 06F11FD93F0323C5 in the GUID
781F254A-C457-5D13-9275-1BF5D56E0724 - a raw entry consisting of a 4-byte header (0x7C000019)
followed by one or more 8-byte hex entries representing the hex portion of a typical Mac-<hex string>
board-id, with a maximum of 120 bytes available for board-id storage, or 15 unique entries.

With this knowledge in hand, we returned to the decompiled efiupdater code to continue our analysis.
Following the retrieval of the board-id, we determined that the next step is to iterate through the EFI firmware
updates found at the path passed in with -p.

For each file, the subroutine in charge of finding and opening firmware update files steps into another subroutine
that reads the file into memory and jumps to the correct offset within the firmware file (0xbc0 or 0x1060,
depending on the relative age of the model) for the 781F254A-C457-5D13-9275-1BF5D56E0724 GUID,
which we now know contains compatible board-id entries.

These subroutines continue to iterate over firmware files until the newest firmware version is found. The version
of the on-disk firmware is determined by scanning the file for the hex string 0x2449534f49424924 which is
“$IBIOSI$” in ASCII representation.

The next 24 bytes following this identifier are then split on the “.” character using strtok() and subsequently
scanned for “88Z” which is the start of the EFI version string. The contents of the version string, formatted as
XXXX.YYY where X and Y are both hexadecimal values are converted to unsigned long integers with strtoul()
for numerical comparison.

A complete table of all known EFI models to Board ID mappings is given in Table 1, a table showing Mac models
that use firmware versions named after other Mac models is given in Table 2. Both tables can be found in
Appendix A.

3.3. How efiupdater Handles EFI Firmware Updates for Macs Based on Their Board-ID

We now have a complete understanding of how efiupdater handles EFI firmware updates for Mac models
without dedicated EFI updates: the tool retrieves the board-id for the Mac it is run on, loads one or more
firmware updates, parses the contents of a specific GUID in the EFI bundle and attempts to find a match for the
board-id it retrieved. This allows Apple to use one firmware update for multiple compatible models without
the need to ship multiple identical files. A simplified flowchart of the above process is illustrated in Figure 3.

20 "GitHub - LongSoft/UEFITool: UEFI firmware image viewer and editor."
https://github.com/LongSoft/UEFITool. Accessed 1 Sep. 2017.

23

https://github.com/LongSoft/UEFITool

Figure 3 - Flow diagram of the process efiupdater follows to locate the correct EFI update file

24

Results

4. The Initial Research Questions

Like all research, we had a series of questions we wanted to answer. The questions we started this
project with were:

● If you are fully patched and up to date with regards to the macOS/OS X software, are you

also fully patched in terms of your EFI firmware?
● Is there a difference between the firmware security patches that are available between

the different major OS versions (in this case, 10.10, 10.11 and 10.12) even though EFI is
independent of the running OS?

● Is there a difference between the firmware security patches that are available between
different models of Mac hardware?

● Are there any discrepancies between the expected version of firmware that a system is
running and the actual version of firmware a system is running when we look over large
numbers of real-world systems that would be indicative of more widespread EFI update
issues?

● More generally, is there information that could be shared about non-obvious areas of EFI
updates and their security that could help Apple admins and users make their systems
more secure?

These questions came from the more general hypothesis that there was an unequal relationship
between the security support provided for software as opposed to firmware. Additionally, we
hypothesized that the exact situation with firmware security patches and which systems received
them was not well-understood, nor something that had been investigated publicly.

It was with these points in mind that we began the project.

5. The Research Methodology
Our research consisted of two main activities:

● The first focused on the analysis of the Mac software update packages themselves, the firmware updates
they contained, and which systems the firmware updates would apply to.

● The second was a large-scale data collection and analysis of 73,383 Mac systems and the versions of
software, hardware and firmware they were running.

The analysis of the firmware and software updates released by Apple covered all Mac updates released
during the period between OS X 10.10 (released October 16, 2014) and macOS 10.13.1 (released October 31
2017). Of the 73,383 real world systems from which data was collected 54,744 of them were running OS
versions that were 10.10.x, 10.11.x or 10.12.x, at the time of data collection from these systems macOS 10.13
had not been released. The full list of updates analyzed and the firmware they contained is given in Table 3 in
Appendix A.

25

Firmware updates from Apple come bundled within the OS updates and are held in a package file called
FirmwareUpdate.pkg. This can be extracted from the larger OS update bundle manually using standard
system tools or through the use of an application like Pacifist. Since Apple update packages are really 21

just xar archives, the following commands will allow you to extract the FirmwareUpdate.pkg package
from the overall OS update package:

xar -xf /tmp/mac_os_upd_10-12-2.pkg FirmwareUpdate.pkg -C
/tmp/extracted_firmware

The FirmwareUpdate.pkg package is, in turn, a directory that contains four files, one of which is a gzip
compressed tar archive named Scripts. It can have its contents extracted using the following:

tar -zxf /tmp/extracted_firmware/FirmwareUpdate.pkg -C Scripts

A second method of extracting the payload from the package is to use the native pkgutil tool and its
expand verb:

pkgutil --expand /tmp/mac_os_upd_10-12-2.pkg /tmp/extracted_firmware

cd /tmp/extracted_firmware/FirmwareUpdate.pkg/Scripts/Tools/EFIPayloads

Either method will produce the directory structure of Scripts that contains a Tools subdirectory that, in
turn, contains the EFIPayloads directory.

Figure 4 - Contents of an EFIPayloads directory in an FirmwareUPdate.pkg bundle

It is in the EFIPayloads directory where the actual EFI update binaries are stored. The naming of the files
in that directory indicate the Mac hardware model in the section before the first underscore, which is
followed by the version of the EFI firmware file itself.

21 "CharlesSoft — Pacifist" https://www.charlessoft.com/cgi-bin/pacifist_download.cgi?type=zip. Accessed 1
Sep. 2017.

26

https://www.charlessoft.com/cgi-bin/pacifist_download.cgi?type=zip

The only deviation from the recipe of analysis outlined above was for two EFI specific updates released by
Apple called EFI Update Mac 2015 and EFI Update Mac 2015-002 that contained a differently named package
called EFIUpdate.pkg, rather than FirmwareUpdate.pkg. The structure and contents of that package
was, however, consistent with what is described above aside from the name of the package.

Now that we know how to get access to the EFI binaries in an update, we can build up our dataset correlating
EFI binary versions observed in an Apple update against the model of Mac hardware the EFI binary was for;
this is repeated for every OS update. This produced datasets that were similar to those in Table A.

OS Update MBP91 MBP121 IM142

com.apple.pkg.update.securi
ty.2017-001Yosemite.14F231
5

00D3 B0C 0167 B14 0118 B12

com.apple.pkg.update.os.Se
cUpd2017-002El
Capitan.15G1510 00D3 B15 0167 B24 0118 B20

com.apple.pkg.update.os.Ma
cBookProUpdate.16F2104 00D3 B15 0167 B24 0118 B44

 Table A - An example of the OS update, Mac hardware model and EFI firmware lookup tables that were

constructed from analysis of the update packages.

In order to make the analysis of these large sets of Apple firmware updates easier and quicker, a small script
was written to automate the task of extracting and tabulating the firmware’s characteristics. As part of this
research, the tooling developed is being released for end users and admins to use to get a better
understanding of their systems’ EFI state.

The second area of analysis was across 73,383 Mac systems deployed in production roles across a range of
organizations. Administrators at these organizations were kind enough to help in this research by supplying
anonymized data regarding the software and firmware versions of their fleets. This data allowed us to work
with a representative dataset of real world production Mac systems that we could query and compare
against the idealized dataset derived from the OS updates themselves.

The data was gathered by running a distributed query of endpoints using one of two methods:

● A prepared osquery statement that gathers Model ID, OS version, OS build and EFI boot rom version 22

○ select hardware_model, os_version.version as os_version, build as

os_build, p.version as rom_version from os_version, platform_info as

p JOIN system_info;

22 "Osquery." https://osquery.io/. Accessed 1 Sep. 2017.

27

https://osquery.io/

● A one-liner shell script that uses system tools to gather the same information:

○ echo "$(ioreg -l | awk '/product-name/ { split($0, line, "\"");

printf("%s\n", line[4]); }')\t$(sw_vers -productVersion)\t$(sw_vers

-buildVersion)\t$(ioreg -d 3 -p IODeviceTree -n rom | awk -F\"

'/version/{print $4}')"

Sample output from methods looks as following:

+----------+---------+----------+---------------------------+

| hw_model | os_vers | os_build | rom_vers |
+----------+---------+----------+---------------------------+

| iMac12,1 | 10.12.5 | 16F73 | IMP121.NNZ.NNNN.BNN.NNNN |
+----------+---------+----------+---------------------------+

Once collected, these were put into a single large dataset that comprised the real world data observed about
the hardware, software and firmware on a range of systems deployed in production roles across a range of
organizations.

With both of these datasets in hand, we were in a position to be able to cross-correlate the observed real
world data against the idealized data derived from Apple’s updates. Since Apple automates the installation
of firmware updates within the larger OS updates, we were able to strongly correlate the expected versions of
firmware that should be present on a system given the model of the Mac hardware and the build version of
the OS. It is the intersection and analysis of these two fairly simple datasets that allowed us to answer many
of our initial questions.

6. Analyzing The Data, What Was Found?
Now that we have created our two main datasets and have a way to correlate them, we could dig into the
actual analysis. What follows is a discussion of the main items of interest that we discovered during our
analysis alongside additional context of what the security impacts of the findings may be.

6.1. Comparing the Running to the Expected Firmware Version, Based on the Current OS
Patch Level

As described in the Research Methodology section, a large-scale data analysis was conducted across 73,324
Mac systems. Of those systems, there were 65,853 Mac systems that were running an OS build in the 10.10
(Yosemite), 10.11 (El Capitan) or 10.12 (Sierra) families for which we had the corresponding OS and EFI
update data from the analysis of update packages themselves. The remaining 7,471 systems were running
versions of OS X older than 10.10.

For these 65,853 systems, we then compared the version of the EFI that was installed against the version of
EFI that we would expect to be installed based upon the running OS version and the EFI binaries we observed
being bundled in that update.

At the top level, this analysis showed that over 4.2% (or 2,282) of the sampled Apple Mac systems were not
running the version of EFI firmware that was released with the OS version they were running. This figure was

28

unexpectedly high given that Apple Mac’s firmware updates come bundled with their OS update and should
be installed automatically, rather than relying on a separate EFI specific update having to be applied.

Given a version of the OS a Mac system is running, there should be a high degree of certainty as to which
firmware version it is running. As part of the installation process that updates the OS to a given version, it
should also automatically update the firmware to the latest version that comes bundled with it.

Digging deeper into the data showed a number of other interesting trends. A breakdown of the most
interesting observations are given below:

● When segmented on the basis of different Mac models, there were certain newer models of hardware
that had significantly higher rates of unexpected versions of EFI running. The top five models of Mac
showing above-average deviations had the following percentages of unexpected EFI firmware:

○ The iMac16,2 (iMac 21.5”, discontinued 6/5/2017) topped the list with 43% having unexpected
EFI firmware versions.

○ All members of the MacBookPro13 series (late 2016 MacBook Pro) were found to have between
35% and 25% of reported endpoints running an unexpected version of EFI firmware that was
older than the version that shipped with their current OS build version.

○ In fifth place was the Macbook Pro 8,2 (early 2011 models) with 14.9% that had
older-than-expected EFI firmware.

○ These significant deviations from the average across all models of 4.2% of systems running an
older-than-expected version of EFI firmware raises significant questions as to why some models
are more prone than others to have older EFI firmware. Particularly interesting is the clustering
of the three models of the MacbookPro13 series.

● When segmented on the basis of OS version, there was also a significant clustering of discrepancies:

○ Macs running builds of macOS 10.12 Sierra appeared to have the highest overall incidence of
out-of-date EFI firmware with an average of 9.5% running a version of firmware that was older
than the versions that shipped with that OS’s build.

○ Macs running OS X 10.11 El Capitan were second with an average of 3.4% running
older-than-expected EFI versions.

○ Systems running OS X 10.10 Yosemite had the lowest percentage with 2.1% of EFI firmware
versions that were older than expected.

○ This gave a combined percentage across OS X 10.10, OS X 10.11 and macOS 10.12 as 4.2%
running an older-than-expected version of EFI firmware.

○ Overall, our analysis across different OS builds suggests that Mac systems with more recent
versions of macOS are up to 4.5 times as likely to have an EFI version that was older than
expected in relation to the installed OS build version: 2.1% for those running OS X Yosemite vs.
9.5% for macOS Sierra.

29

A more granular breakdown of the systems running unexpected firmware versions is given below in Table 3 in
Appendix A.

Factors Contributing to the Failure to Update EFI

While we are able to observe that older-than-expected and vulnerable versions of firmware are running on
large populations of deployed Macs, we are not able to determine the exact root cause that is behind these
figures. In reality, we expect that there are likely a variety of different factors at play that contribute to the
results we observed.

The sheer number of affected systems alongside the manner in which they cluster depending on OS and
hardware version gives us confidence that the anomalies are not purely a result of user error on the part of
system owners and it is, in fact, reflective of some kind of failure in the way EFI firmware updates are
installed.

Not every method of updating OS X/macOS is equivalent and some methods are seemingly not able to
update the EFI firmware. One notable example of this is if the update is being performed via an update
source that is using Target Disk Mode.

In such a scenario, the OS will update but the EFI will remain at the previous version. This may explain some
of the EFI version discrepancies if systems had a new major OS build installed via the target disk installation
method, however it would not account for the discrepancies arising from OS updates installed after the initial
base OS installation.

It would also be reasonable to assume that there may be other conditions where installation methods are
not able to update the EFI, although the conditions that could preclude the update of the EFI are not
seemingly documented anywhere and so would be unknown to most admins and users.

A more concerning potential contributing factor is that, if the EFI update process fails for some reason, the
user is not notified, and continues to not be notified, about the fact that their version of EFI is old and, in
some cases, potentially vulnerable. This creates a situation where end users and admins believe they are
running the most secure and up-to-date system components they can and are, in fact, in a position of
potential blind vulnerability to attacks they thought they were secured against.

Compounding this issue further is that without manually carving up an OS update package and knowing the
undocumented commands you have to run to update an EFI firmware image, there is no official way to
update the EFI image without a full reinstall of the OS update. An anecdotal sampling of the experienced
admins at the organizations who shared their system version data with us for this study showed that, without
exception, they were all very surprised at the discrepancies in their fleet’s EFI versions and that they have
received no notifications of those discrepancies from the management systems they use.

Regardless of the root cause, the fact that this is the real-world state of EFI firmware security for Mac
deployments strongly indicates there is some form of widespread failure at play, further highlighting the lack
of visibility, notification, and control that users and admins have over the security of their system’s firmware.

30

6.2. Discrepancies in the Systems Receiving Firmware vs. Software Security Patches

Though all the EFI vulnerabilities discussed in section 6.4 were eventually patched by Apple, the way in which
this seems to have been achieved appears somewhat arbitrary and differs significantly depending on the
combination of the Mac model and OS version.

For example, older iMac models from the iMac11,1 range did not appear to have received any updated EFI
firmware until it was bundled with either the OS X 10.11.1 update, or applied with the EFI Security Update
2015-002. These two updates were released in October 2015 and contained patches for the Thunderstrike
vulnerability. That same patch had been made previously available for newer Mac models back in June 2015,
meaning certain models of Mac were left vulnerable almost four months longer than others.

Older and no longer shipping models received their EFI updates much later, or not at all, vs. newer models
that were still available. This could make more sense if the systems not receiving EFI security patches were
also no longer supported by the OS versions that Apple continues to provide software security patches for,
but this is not the case.

Overall, our analysis of the security patches identifies the following 16 models of Mac systems that are still
supported from the perspective of security updates for the OS and built-in applications, but that also appear
to no longer receive security updates for their EFI firmware.

iMac iMac7,1 iMac8,1 iMac9,1 iMac10,1

MacBook MacBook5,1 MacBook5,2

MacbookAir MacBookAir2,1

MacBookPro MacBookPro3,1 MacBookPro4,1 MacBookPro5,1 MacBookPro5,2 MacBookPro5,3
MacBookPro5,4

Macmini N/A

MacPro MacPro3,1 MacPro4,1 MacPro5,1

These delays and lack of EFI updates would make more sense if those older models also no longer supported
the then-current shipping OS, but this is not the case. All of the “delayed” older models were fully capable of
running the current OS at the time, yet did not receive EFI firmware updates (if they received them at all) until
a later Security Update release, or updates to the OS itself.

This creates a situation where there are models of Macs that are secure and patched against known security
issues from the perspective of their software, but are still vulnerable and out of date in terms of their
firmware - or, to put it another way, they are software secure but firmware vulnerable.

There were other unexplained omissions from the list of Mac models that received EFI firmware updates as
well. Certain models that, at the time of writing, had supported every shipping version of the OS had either
not received any EFI firmware updates or only started receiving them much later. Some examples include:

31

● Mid-2010 MacBook 13” (MacBook7,1)
● Mid-2010 MacBook Pro 17” (MacBookPro6,1)
● Mid-2010 MacBook Pro 13” (MacBookPro7,1)
● Early 2009 Mac Mini (Macmini3,1)

The Mid-2010 MacBook 13” (MacBook7,1) did not appear to have received any EFI firmware updates until
macOS 10.12 Sierra shipped in September 2016. Since this is a model that first shipped in 2010, it would be
reasonable to expect that some, if not all, of the EFI firmware patches that shipped between January 2015
and September 2016 were applicable to its firmware, even though it does not have any PCI-connected
peripheral ports.

Patch Protection Against ThunderStrike 1 & 2

You may recall that while the first Thunderstrike vulnerability used PCI-attached peripherals to force loading
option ROM code that attacked the EFI firmware, later vulnerabilities did not require physical malicious
hardware to be present, thus potentially making the 2010-era 13” MacBook vulnerable.

The mid-2010 17” MacBook Pro did not receive an EFI firmware update until EFI Update 2015-002 was
released, providing protection against Thunderstrike 2. Since the earlier EFI Update 2015-001 patched the
hardware-based Thunderstrike 1 vulnerability, this means there was a gap in coverage of about four months
during which MacBookPro6,1 was vulnerable.

In comparison, the mid-2010 13” MacBook Pro went without any EFI firmware updates until macOS 10.12.4
when a MacBookPro7,1-specific update appeared. Lacking any evidence of earlier EFI firmware updates for
this model, we must conclude that the mid-2010 13” MacBook Pro was vulnerable to any vulnerabilities
starting with Thunderstrike 1 and continuing until 10.12.4 patched the PCI DMA attack by Ulf Frisk.

It is unclear if this update also provided “true up” patches for other historical EFI vulnerabilities or if it only
patched the DMA attack vulnerability. We would be more inclined to assume that these models were simply
not affected by any of the vulnerabilities found over the course of 2015 and 2016, but since they have now
also started receiving regular EFI firmware updates, the reason for this late inclusion might very well be
because of security concerns that arose later.

6.3. Lack of Visibility, User Alerts and Mac Model/OS Inventory

Compounding these issues further is the lack of visibility into the discrepancy between the security support
provided to software vs. firmware, as well as no available data detailing which Mac models on which OSs will
receive firmware security patches. Compared to software updates, there is a lack of alerts provided to notify
a user of the need for firmware updates, or that the currently running EFI firmware is out of date.

Additionally, there is a lack of readily-available information describing the known security issues any
particular EFI version may be vulnerable to; this means users and admins are rarely aware of the risks
associated with running unpatched EFI firmware.

The state and visibility of firmware security updates appears significantly lacking when compared to the
security updates of OS and application software. As a result, Apple infrastructure is exposed to the risk of a
compromise due to a variety of public exploits that target EFI firmware.

32

In addition, Apple arbitrarily and gradually phases out security updates for older OS versions, causing those
versions to quietly miss out on important EFI firmware updates. The lack of a reliable and published roadmap
for current and past OS version support makes it hard to establish an enforceable OS deprecation timeline
for most IT organizations. This may inadvertently soothe some into thinking that their older models running
older OS versions are still fully supported. Apple’s only standing advice for anyone managing Mac models
and OS versions of any age is to always run current hardware and software.

6.4. Anomalies in Firmware Versions Suggest Incorrect Firmware May Have Shipped With
Security Updates

As we were analyzing the various OS updates and building up our lookup tables for which versions of EFI
firmware shipped for which Mac models, we encountered an unexpected situation where it seems that
Security Update 2017-001 (released March 27 2017) for both OS X 10.10.x (Yosemite) and 10.11.x (El Capitan)
were released containing EFI binaries that were older than the EFI binaries released with the previous OS
updates (Security Update 2016-007 for Yosemite and Security Update 2016-003 for El Capitan).

MD5 hashes of the EFI files contained in the 2017-001 updates show that they match the versions of firmware
that were released in security updates from October 2016. Tables 4 and 5 in Appendix A provide the
breakdown of EFI firmware that shipped with the 2017-001 security updates and in the previous two security
updates.

In total, there were 24 EFI binaries that shipped with Security Update 2017-001 for Yosemite (Build 14F2315)
that were older versions than shipped with Security Update 2016-007 for Yosemite (Build 14F2109). There
were also 23 EFI binaries that shipped with Security Update 2017-001 for El Capitan (Build 15G1421) that were
older versions than shipped with Security Update 2016-003 for El Capitan (Build 15G1217).

After this discovery, we wanted to confirm whether there was ever a situation in which this might have
caused an unintended downgrade of the EFI firmware of any of the supported Macs. Our analysis showed
that in normal use, neither of the EFI firmware updater tools MultiUpdater.efi or efiupdater would
have caused older versions of EFI to be reflashed on a system as the pre-boot EFI update environment
independently checks the version of the new firmware image and will not allow downgrades.

Even if the updater applications were used with non-standard options to force an older EFI firmware binary
to be set for installation (or if the whole EFI update process was done manually), security mechanisms within
the EFI update pre-boot environment itself prevent a firmware downgrade from occurring. As such, we do not
believe a widespread downgrade of EFI firmware was likely to have occurred. This means that the EFI
binaries shipping with Security Update 2017-001 look like dead weight and would not serve any purpose to
an end user, which further supports the assumption that the presence of the old EFI firmwares in the two
2017-001 security updates were an error by Apple in the packing of the updates. As of the time of writing, this
is an error that has still not been addressed by Apple.

Upon the release of Security Update 2017-002 (15 May 2017), these regressions were fixed for OS X 10.11 (El
Capitan) with EFI binaries of a completely new version being released, however Security Update 2017-002 for
10.10 (Yosemite) did not address the version issues, as it released without any EFI binaries at all. This creates
a confusing situation whereby there are 27 Mac models that would be running more up-to-date firmware if
they were at OS update 2016-006 rather than at OS update 2017-002, but would obviously be running
out-of-date software.

33

While an interesting anomaly in and of itself, the fact that Apple shipped what appears to be the incorrect
versions of EFI firmware in a security update also raises some concerns around the QA release process that
goes into the production release of security updates, as well as the internal coordination between the
engineering teams responsible for the Mac software and firmware. This further goes to show the asymmetric
relationships that exist in terms of software and firmware security, depending on complex intersections of
specific versions of hardware and software.

6.5 - Public EFI Vulnerabilities and Associated Patch Releases

Tables 6, 7, 8 & 9 in Appendix A show the updates released that address the range of known public EFI
vulnerabilities that have been either explicitly called out as being fixed in Apple’s release notes or that were
verified as being patched through testing by vulnerability authors (it is assumed that any updates released
subsequently to the versions cited as addressing a vulnerability also contain the fix, although, at this time,
this has not been independently verified through reverse engineering or comprehensive testing for
exploitability).

To our knowledge, there is no currently available dataset that maps Apple’s EFI versions to the vulnerabilities
that impact them. As part of this work, we will be releasing the data and APIs to make those queries simple to
make.

Beyond the data surrounding which EFI firmware versions patch which vulnerabilities, the collation of these
vulnerability-specific datasets themselves allows further analysis, which presents some interesting results
that are discussed below in more detail. In tables 6, 7, 8 & 9 in Appendix A, anomalies are highlighted with
green text.

Thunderstrike 1 (CVE-2014-4498) patches - This patch looks relatively straightforward. All systems 23

receiving the patch receive it evenly across the board, regardless of whether they are running 10.10, 10.11, or
10.12.

23 "CVE - CVE-2014-4498." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498. Accessed 1 Sep.
2017.

34

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4498

In all, there were 47 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to
receive a patch against the Thunderstrike 1 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1, iMac11,1, iMac11,2, iMac11,3, iMac12,1,
iMac12,2, iMac13,1, iMac13,2

MacBook MacBook5,2, MacBook6,1, MacBook7,1

MacBookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2, MacBookAir4,1, MacBookAir4,2,
MacBookAir5,1, MacBookAir5,2

MacBookPro MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2, MacBookPro5,3,
MacBookPro5,4, MacBookPro5,5, MacBookPro6,1, MacBookPro6,2, MacBookPro7,1,
MacBookPro8,1, MacBookPro8,2, MacBookPro8,3, MacBookPro9,1, MacBookPro9,2

Macmini Macmini3,1, Macmini4,1, Macmini5,1, Macmini5,2, Macmini5,3

MacPro MacPro3,1, MacPro4,1, MacPro5,1, and MacPro6,1

Thunderstrike 2 (CVE-2015-3692, CVE-2015-3693) patches - This patch set is also consistent in the 24 25

versions of EFI that are being patched across all OS versions that contained the EFI updates. Exceptions
worth noting would be iMac15,1 and MacBook8,1 that did not have updated firmware shipped in Security
Update 2015-005 for 10.9 or 10.8. This was most likely because these models were released with OS X 10.10.x
installed and so are not considered supported for 10.9 or 10.8.

In all, there were 31 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to
receive a patch against the Thunderstrike 2 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1, iMac11,1, iMac11,2, iMac11,3, iMac12,1

MacBook MacBook5,1, MacBook5,2, MacBook6,1, MacBook7,1

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2,
MacBookPro5,3, MacBookPro5,4, MacBookPro5,5, MacBookPro6,1,
MacBookPro6,2, MacBookPro7,1

Macmini Macmini3,1, Macmini4,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

24 "CVE - CVE-2015-3692." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692. Accessed 1 Sep.
2017.

25 "CVE - CVE-2015-3693." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693. Accessed 1 Sep.
2017.

35

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3692
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3693

CVE-2015-4860 patches - This patch set had quite a number of anomalies focused on the uneven 26

distribution of EFI updates across the range of OS and security patches that should have contained them. A
summary of the anomalies is given below:

● No EFI patches for this vulnerability were released for systems running OS X 10.9.x.
● Certain models of Mac seem to have had EFI firmware patches missing from Security Update

2015-004 for 10.10 and only updated firmware included in 10.11.1 and EFI Security Update
2015-002. The models in question are MacBookAir4,1, MacBookAir4,2, MacBookPro8,1,
MacBookPro8,2, MacBookPro8,3, Macmini5,1, Macmini5,2, Macmini5,3. The absence of firmware
updates for them in Security Update 2015-004 for 10.10 is in contrast to the many other models
receiving patches for CVE-2015-4860 across the board, looking at the heatmap helps make these
anomalies clear.

● iMac16,2 does not have an EFI update included in 10.11.1 whereas iMac17,2 does. This model of
Mac was released only a short time before the CVE-2015-4860 patch and so it is conceivable that
the EFI firmware it shipped with from the factory was already patched against the vulnerability,
though this raises the question as to why that wasn’t also the case for iMac17,1.

● Another anomaly is the absence of EFI patches in the EFI Security Update 2015-002 for the
following models: iMac15,1, MacBook8,1, MacBookAir7,1, MacBookAir7,2, MacBookPro11,4,
MacBookPro11,5 and MacMini7,1. These models break the pattern of other closely related
models that ship firmware patches in EFI Security Update 2015-002 and is also noteworthy for
the fact that all of these models had firmware patches contained in EFI Security Update
2015-001.

In all, there were 25 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to
receive a patch against the CVE-2015-4860 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1

MacBook MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2,
MacBookPro5,3, MacBookPro5,4, MacBookPro5,5, MacBookPro7,1

Macmini Macmini3,1, Macmini4,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

26 "CVE - CVE-2015-4860." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860. Accessed 1 Sep.
2017.

36

https://docs.google.com/spreadsheets/d/1gzgm9i4Qd7RigmaBTfb11sYKrMHRHMQfZJ858bSu0EY/edit#gid=950358173
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860

DMA attack (CVE-2016-7585) patches - This patch set contained a number of anomalies relating to the 27

combinations of Mac hardware and OS version that see patches for the vulnerability being shipped.

● Singular in its occurrence was the anomaly of iMac16,2 that seems to be missing a patch for
10.11 even though it receives a patch for 10.12 and 10.10

● Distinct as compared to the other security patches discussed so far was the number of models
that received EFI security updates that had never seen them before. However, they only
received the fix for CVE-2016-7585 if they were running 10.12; if they were running OS versions
10.11 or 10.10, they remained vulnerable. The models in questions are: MacBook7,1,
MacBookPro7,1, and MacMini4,1.

● The patch set also exhibited a characteristic not seen in other EFI vulnerability patches where
the version numbers of the EFI firmware were different depending on which software patch
contained them. While these different version numbers are not necessarily vulnerabilities in and
of themselves, it is an artifact of the inconsistencies observed in the way EFI firmware security
patches are being provided across different OS versions.

In all, there were 22 modern Mac models capable of running 10.10, 10.11 or 10.12 that did not appear to
receive a patch against the CVE-2016-7585 vulnerability:

iMac iMac7,1, iMac8,1, iMac9,1, iMac10,1

MacBook MacBook5,1, MacBook5,2, MacBook6,1

MacbookAir MacBookAir2,1, MacBookAir3,1, MacBookAir3,2

MacBookPro MacBookPro3,1, MacBookPro4,1, MacBookPro5,1, MacBookPro5,2,
MacBookPro5,3, MacBookPro5,4, MacBookPro5,5

Macmini Macmini3,1

MacPro MacPro3,1, MacPro4,1, and MacPro5,1

Additionally, these 22 models did not receive security patches for any of the four public vulnerabilities
discussed above.

Overall, the level of inconsistency that seems to be present with regards to which systems are receiving EFI
patches for known public vulnerabilities is concerning due to the likelihood of systems remaining
inadvertently unpatched and vulnerable with end users and admins possibly having a false sense of security
in thinking their systems had been patched. This heatmap shows a more graphical overview of which
systems did or did not receive a patch for a given vulnerability at the time of initial release.

27 "CVE - CVE-2016-7585." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7585. Accessed 1 Sep.
2017.

37

https://docs.google.com/spreadsheets/d/1gzgm9i4Qd7RigmaBTfb11sYKrMHRHMQfZJ858bSu0EY/edit#gid=752467676
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7585

We would encourage Apple and other vendors to be both explicit and transparent with the systems that are,
and are not, receiving EFI firmware patches for known public vulnerabilities in order to provide the users of
systems full visibility to the state of their systems and any associated risks.

6.6 - Incorrect CVE Assigned to Unused EFI Functions

A smaller finding discovered as part the research was the incorrect CVE ID given in the release notes for
Apple’s OS update for OS X El Capitan 10.11.1 and related security updates for Yosemite and Mavericks.

The discrepancy was that in the Apple security release notes, the CVE attribution for this issue was listed as 28

CVE-2015-4860. This was incorrect as it refers to an entirely unrelated Oracle Java vulnerability. The correct 29

CVE that should have been referenced for the vulnerability is CVE-2015-7035. 30

We raised this as a Radar item that got assigned ID 32995209 and was corrected by Apple as of 7/12/2017 31

and confirmed by us on 7/17/2017.

6.7. Miscellaneous and Interesting Anomalies in the Dataset

This section just captures a few other observations made during the research, and while they are not as
concerning as some of the other findings above, they are worth noting and could warrant more investigation
or explanation in the future.

Analyzing the released firmware updates and looking at the highest version available for each Mac model seen in
Table 10 in Appendix A reveals some interesting anomalies (note that due to a range of reasons discussed
elsewhere in the paper, the highest numbered version of EFI firmware does not always relate to the most recently
released).

A collection of high-level observations from this data include:

● Mac model Mac11,1 seems to have never received a newer EFI firmware version since the standalone
2015-002 EFI update.

● Mac model MacBookPro6,1 saw no EFI updates for an OS version since the standalone 2015-002 EFI
update until the 10.12.4 update released in March 2017. After that, two month delay until Security
Update 2017-002 (El Capitan) was released in May 2017.

● There are six systems where the most recent version of EFI firmware shipping with OS X 10.11 (El
Capitan) do not match the most recent versions of EFI firmware shipping with macOS 10.12 (Sierra).
These systems are iMac14,1, iMac14,2, iMac14,3, MacBookAir6,1, MacBookAir7,1 and MacMini7,1.

28 "About the security content of OS X El Capitan 10.11.1 ... - Apple Support." 30 Jun. 2017,
https://support.apple.com/en-us/HT205375. Accessed 1 Sep. 2017.

29 "CVE - CVE-2015-4860." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860. Accessed 1 Sep.
2017.

30 "CVE - CVE-2015-7035." https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7035.
Accessed 1 Sep. 2017

31 "rdar://32995209: Incorrect CVE listed in HT205375 ... - Open Radar." 26 Jun. 2017,
https://openradar.appspot.com/32995209. Accessed 1 Sep. 2017.

38

https://support.apple.com/en-us/HT205375
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4860
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7035
https://openradar.appspot.com/32995209

● With the exception of iMac11,1, any system running OS X 10.10 (Yosemite) runs older EFI firmware than
the same system running OS X 10.11 (El Capitan) or macOS 10.12 (Sierra).

● Given the possibility of the EFI firmware version regression already discussed in section 6.4, the highest
versions of EFI firmware for Yosemite systems were released in early December 2016.

6.7.1. Mac Models With Multiple Observed Versions in Production but No Observed Efi Updates

An analysis of the real world dataset alongside the EFI firmware updates released with the OS patches shows a
number of Mac models that have only been observed with either a singular, or small number of deployed
versions. Single versions of observed EFIs strongly indicate that those Mac models have never received a field
update to their EFI and are running the firmware that they left the factory with.

Two or three observed versions that are very close in build number could indicate that either there were a small
number of different firmware versions that were used on shipping Macs, or that there were field updates - but
they were before the release of OS X 10.10 and were not part of our analysis. If the latter is the case, then the EFI
firmware of those models has gone many years without seeing an in-field update and are likely open to multiple
vulnerabilities.

Table 11 in Appendix A shows the models that had no EFI updates between OS versions 10.10.0 to 10.13.1 and
where the real world data shows only one, two or three EFI versions observed in the wild. All of the models here
are capable of running 10.11 or newer, older models were not included as part of this analysis.

6.7.2. An Anomaly in EFI Firmware Updates for Macbook Pros

There were three models of Macbook Pros (MBP111, MBP114 & MBP121) where, for Security Update 2016-003 (El
Capitan), the firmware in the OS update did not appear to have their versions increased in the same way that
EFI’s for other related Macbook Pros did. Table B shows the observed anomalies:

Update Date MBP101 MBP102 MBP111 MBP112 MBP114 MBP121

2016-007
(Yosemite) 2016/12/13 00EE B0B 0106 B0B 0138 B18 0138 B18 0172 B10 0167 B18

2016-003
(El Capitan) 2016/12/13 00EE B0B 0106 B0B 0138 B17 0138 B18 0172 B09 0167 B17

10.12.2
(Sierra) 2016/12/13 00EE B0B 0106 B0B 0138 B18 0138 B18 0172 B10 0167 B18

Table B - EFI firmware versions released in Security Update 2016-003 (El Capitan) that did not appear to
receive an update while other Macbook Pro models did

Table B shows in green the three models of Macbook Pro with versions of firmware that did not seem to receive
updates in the OS update package despite other Macbook Pro models receiving an incremental update for the
same 2016-003 (El Capitan) security update, and the same Macbook Pro models also receiving updated firmware
in the updates for 10.12.2 and 2016-007 (Yosemite).

39

This data tends to suggest that there could have been another FirmwareUpdate.pkg QA issue where the
three Macbook Pros erroneously didn’t receive the firmware update they should have; it also could have been
intentional on Apple’s part. It’s impossible for us to know, but it is interesting nonetheless.

6.7.3. EFI Update Filename Anomalies

Some EFI update filenames seem to flip the endianness of the numbers used in the file naming of the build
number in OS update 10.12.4 released in March 2017. The differently-named EFI updates were confirmed to be
identical through comparing the SHA-256 hashes on the files themselves.

For example, Mac model iMac12,1 had an EFI update named ‘IM121_0047_B29’ in OS update 10.12.4, and it
converted back to ‘IM121_0047_29B’ in OS update 10.12.5. While this is not a security issue in and of itself, it does
raise questions about the level of automation and associated QA processes involved in the release of new EFI
updates. Inconsistencies in the versioning of updates quickly leads to worries about inconsistencies elsewhere
that may be less visible. Aside from any security issues, naming convention discrepancies like this can make
tooling that inspects things like versions more of a pain to write as there has to be unique exceptions for such
anomalies.

The full list of systems where we observed this EFI file name change is: iMac11,2, iMac12,1, MacBook7,1, and
MacBookPro6,1.

7. Mitigations
While the age of Macs and the OS running on them as used by an organization in combination with the

management tools in use can make for a complicated picture when it comes to keeping track of the

actual deployed versions of EFI firmware, the ways to mitigate out-of-date versions are straightforward:

● Always deploy the full update package as released by Apple, do not remove separate packages from the

bundle updater. Some Mac sysadmins will separate the OS and EFI firmware updates for historical

purposes but this should no longer be necessary.

● When possible, deploy Combo OS updates instead of Delta updates. After the initial .1 point update to

macOS, Apple releases both Combo and Delta updates. Mac sysadmins in the field report better update

success rates when choosing the Combo update.

● Verify that endpoints received the expected EFI firmware version as shipped with the OS update that was

applied. Refer to the Research Methodology section for directions on how to find the versions of EFI

firmware as part of an OS or security update

● Since Apple no longer provides separate EFI firmware updaters through their Support website, it is

imperative that any endpoints that did not receive the expected EFI firmware update are scheduled to

re-install their most recent OS or security update.

40

● Although faster, it is important to keep in mind that when using imaging workflows instead of file-based

installations of the OS, there is a significant chance that the target Mac will not receive EFI firmware

updates. Imaging workflows simply write the blocks of a precreated disk image to disk and unless the

post-imagine workflow is followed up with an installation of the appropriate EFI firmware update for the

just deployed OS version, the endpoint firmware may go out of date. This includes imaging via Target

Disk Mode and NetBoot or NetInstall-based imaging workflows.

● As a general rule of thumb, always run the latest version of macOS (10.12 at the time of writing). While

Apple has historically provided security updates for at least the two previous OS versions, they typically

do not contain all the security patches that ship for the current OS version and this seems increasingly

true for EFI firmware updates.

Conclusion
This research has shone a light on some of the ways in which security patch support provided by Apple

for firmware is quite different than the security patch support they provide for software. Our findings

highlighted five main areas of note regarding Apple’s EFI security:

1. You can be software secure but firmware vulnerable.The EFI firmware security patch support

does not map 1:1 to software security patch support provided by Apple. As a result, you can be

unknowingly running systems that are fully up to date for OS and applications, but years out of

date in terms of EFI firmware, leaving your Mac vulnerable to publicly disclosed vulnerabilities

and exploitation.

2. There seems to be something interfering with the way bundled EFI firmware updates are

getting installed, leading to systems running old EFI versions. We are not able to give an

exact reason why, but there are significant discrepancies between the firmware version that is

actually running on real world production systems and the version that is expected to be

running, given the OS build. This means that even if your Mac is still receiving security patch

support, there is a non-trivial chance that your system is not running the latest version, even

though you thought it was installed.

3. The release QA on the FirmwareUpdate bundles is concerning - The presence of what looks

like version regressions on the included EFI firmware bundles for recent security updates is very

surprising to find. Additionally, the seemingly erroneous absence of security-specific EFI

updates for some models of hardware is even more worrying. The fact that it has not been

detected and fixed by Apple retrospectively is more surprising still, as is the fact that the

following 2017-002 security update only rectified the issue for El Capitan systems and not for

Yosemite.

41

4. There is very little visibility to the state of EFI firmware security for Apple systems. From a

variety of perspectives, access to information about EFI firmware security is hard or impossible

to find. There are no published timelines for how long EFI firmware will be supported for

firmware patches, or any lists of which systems are no longer going to receive firmware updates,

despite continuing to receive software security updates. Visibility is also lacking for the admins

and users of Mac systems who are not notified when their systems are running out-of-date

firmware, nor are they able to find out in a direct fashion which vulnerabilities apply to their

current version of EFI firmware.

5. Mac sysadmins too often ignore the importance of EFI firmware updates, or actively

remove them due to past issues with their deployment. The process of applying EFI firmware

updates used to be a laborious process that required hands-on interaction by IT support staff.

Due to this, many Mac sysadmins over time decided to remove or disable the deployment of EFI

firmware updates alongside OS or security updates, deciding to “deal with it” as needed. While

at one point this may have been an acceptable workaround if combined with diligent manual

application of EFI firmware updates, the current automated process of deploying EFI firmware

updates alongside OS or security updates should be followed. Despite the possible gaps in

coverage as described by this paper, it is still vastly superior to either not applying them at all or

only at certain larger “catch-up” intervals or when a specific new EFI vulnerability is announced

and patched.

As was noted at the start of this report, while Apple systems were the subject of this study, we fully

expect the same issues, and in all likelihood far worse issues, with Wintel PC systems. We chose the Apple

ecosystem to study as it’s a far more controlled environment and therefore easier to analyze and arrive

upon conclusions. The far more heterogeneous nature of the PC ecosystem likely exacerbates the issues

related to visibility, QA, and availability of EFI firmware security patches. It would certainly be an area we

will look into researching at a future date.

The advent of UEFI brought with it a far more modern pre-boot environment and finally put an end to the

many years of legacy workarounds that had to be applied to the aging IBM BIOS ‘standard,’ providing a

common, uniform and higher-level platform to innovate upon. However, that uniformity and

accessibility also opened the door to far more generic and useful pre-boot environment attack

opportunities. Much of the publicly available evidence suggests it has been an active, lucrative area of

security research.

As the pre-boot environment becomes increasingly like a full OS in and of its own, it must be likewise be

treated like a full OS in terms of the security support and attention applied to it. This attention goes

42

beyond just releasing well QA’d EFI patches - it extends to the use of appropriate user and admin

notifications to message the security status of the firmware alongside easy-to-apply remedial actions.

Overall, we are pleased to have been able to share what we learned with you alongside the datasets, APIs

and tools that will help provide better visibility into the security state of your Apple Mac fleet’s EFI

security.

43

Appendix A
Below are a series of tables related to the analysis in the preceding sections.

Table 1. EFI Model ID to Apple Board ID Mapping

A complete table of all known EFI model to Board ID mappings is as follows:

EFI Model ID Board ID

IM141 Mac-031B6874CF7F642A

IM142 Mac-27ADBB7B4CEE8E61

IM143 Mac-77EB7D7DAF985301

IM144 Mac-81E3E92DD6088272

IM151 Mac-42FD25EABCABB274, Mac-FA842E06C61E91C5

IM161 Mac-A369DDC4E67F1C45

IM162 Mac-FFE5EF870D7BA81A

IM171 Mac-DB15BD556843C820, Mac-B809C3757DA9BB8D, Mac-65CE76090165799A

IM181 Mac-4B682C642B45593E

IM183 Mac-77F17D7DA9285301, Mac-BE088AF8C5EB4FA2

MB101 Mac-EE2EBD4B90B839A8

MB81 Mac-BE0E8AC46FE800CC, Mac-F305150B0C7DEEEF

MB91 Mac-9AE82516C7C6B903

MBA61 Mac-35C1E88140C3E6CF, Mac-7DF21CB3ED6977E5

MBA71 Mac-9F18E312C5C2BF0B, Mac-937CB26E2E02BB01

MBP111 Mac-189A3D4F975D5FFC, Mac-D1FF70AF6D8C849A

MBP112 Mac-3CBD00234E554E41, Mac-2BD1B31983FE1663

MBP114 Mac-06F11FD93F0323C5, Mac-06F11F11946D27C5

MBP121 Mac-E43C1C25D4880AD6

MBP131 Mac-473D31EABEB93F9B

MBP132 Mac-66E35819EE2D0D05, Mac-1BDAB09B689867E2

MBP133 Mac-A5C67F76ED83108C

MBP141 Mac-B4831CEBD52A0C4C

MBP142 Mac-CAD6701F7CEA0921

MBP143 Mac-551B86E5744E2388

MM71 Mac-35C5E08120C7EEAF

44

Table 2. Mapping of Mac Models Using EFI Firmware Files Named For Other Mac Models

Mac Model Model of Mac EFI Firmware Used Notes

IM113 IM112

IM122 IM121

IM132 IM131

MBA32 MBA31

MBA42 MBA41

MBA52 MBA51

MBA62 MBA61

MBA72 MBA71

MBP113 MBP112

MBP115 MBP114

MBP54 MBP53 MP53 is one of the
firmwares that never
appears to have been
updated in the field,
meaning MBP54 has never
seen an update either

MBP62 MBP61

MBP82 MBP81

MBP83 MBP81

MBP92 MBP91

MM52 MM51

MM53 MM51

MM62 MM61

IM182 IM183 Only a single datapoint for
this model, but interesting
to see IM182 use firmware
named for IM183 and not
IM181. All other aliased
firmware seem to use
firmware from models of a

45

lower ID

Table showing the aliases between models of Mac that use firmware versions named after other Mac models.
These firmware files contain the board-ID used to identify all of the systems they are compatible with,
regardless of the filename.

Table 3. Breakdown of Systems Running Different-Than-Expected EFI Versions, Based on OS Version

Mac Model

% Running
Older-Than-Expected
EFI Version

Raw Count of Systems
Running Older EFI

Total Count of
Systems Running
Older EFI

iMac16,2 43.0% 941 2190

MacBookPro13,2 34.8% 114 328

MacBookPro13,1 28.5% 39 137

MacBookPro13,3 24.8% 78 314

MacBookPro8,2 14.9% 89 598

MacBookPro8,1 11.9% 59 498

Macmini3,1 11.5% 6 52

Macmini6,1 6.7% 13 194

iMac16,1 5.2% 15 287

MacBookAir6,1 5.0% 29 586

MacBook9,1 4.9% 10 206

Macmini7,1 4.8% 50 1035

MacBookAir4,1 4.4% 6 138

MacBookPro8,3 4.4% 3 69

iMac13,1 4.1% 86 2119

MacBookAir6,2 3.6% 81 2244

Macmini5,2 3.0% 4 135

MacBookPro9,1 2.8% 40 1419

iMac12,1 2.8% 75 2725

MacBookAir5,2 2.6% 16 619

MacBookPro9,2 2.4% 55 2257

MacBookPro12,1 2.3% 116 5048

MacBookPro11,2 2.3% 38 1659

MacBookAir4,2 2.2% 7 313

iMac17,1 2.2% 47 2103

46

MacPro6,1 2.2% 13 582

MacBookAir7,1 2.1% 19 894

MacBookPro11,1 1.9% 28 1458

MacBookPro11,4 1.8% 30 1635

iMac11,3 1.7% 6 350

MacBook8,1 1.6% 5 309

MacBookPro11,3 1.6% 17 1080

iMac14,1 1.5% 42 2781

iMac14,4 1.4% 5 347

Macmini6,2 1.4% 8 563

MacBookAir5,1 1.3% 3 227

MacBookPro10,1 1.2% 16 1336

iMac14,2 1.1% 39 3602

iMac15,1 1.0% 11 1064

iMac11,2 0.8% 6 749

MacBookPro10,2 0.8% 4 529

iMac13,2 0.4% 9 2099

iMac14,3 0.1% 4 4644

iMac11,1 0.0% 0 1009

iMac12,2 0.0% 0 1547

MacBook5,1 0.0% 0 37

MacBook7,1 0.0% 0 10

MacBookAir3,1 0.0% 0 58

MacBookPro5,5 0.0% 0 80

MacBookPro6,1 0.0% 0 14

MacBookPro7,1 0.0% 0 237

Macmini4,1 0.0% 0 155

Macmini5,1 0.0% 0 44

Macmini5,3 0.0% 0 31

Table 4. EFI Firmware for Security Update 2017-001, OS X 10.11

This table reflects EFI firmware contained in the Security Update 2017-001 for OS X 10.11 (El Capitan),

showing the one-to-one match between its EFI binary versions and the versions shipped with the security

47

update two versions prior.

Mac
Model

Security Update 2017-001
(10.11)
[Released March 27, 2017]

Security Update 2016-003
(10.11)
[Released Dec 13, 2016]

Security Update 2016-002
(10.11)
[Released Oct 24, 2016]

IM121 0047 23B 0047 25B 0047 23B

IM131 010A B09 010A B0A 010A B09

IM141 0118 B13 0118 B14 0118 B13

IM142 0118 B13 0118 B14 0118 B13

IM143 0118 B13 0118 B14 0118 B13

IM144 0179 B13 0179 B14 0179 B13

IM151 0207 B06 0207 B08 0207 B06

IM161 0207 B03 0207 B04 0207 B03

MB81 0164 B14 0164 B19 0164 B14

MB91 0154 B05 0154 B09 0154 B05

MBA41 077 B14 077 B15 077 B14

MBA51 00EF B04 00EF B05 00EF B04

MBA61 0099 B22 0099 B23 0099 B22

MBA71 0166 B12 0166 B13 0166 B12

MBP81 0047 2CB 0047 2DB 0047 2CB

MBP91 00D3 B0D 00D3 B0E 00D3 B0D

MBP101 00EE B0A 00EE B0B 00EE B0A

MBP102 0106 B0A 0106 B0B 0106 B0A

MBP112 0138 B17 0138 B18 0138 B17

MM51 0077 B14 0077 B15 0077 B14

MM61 0106 B0A 0106 B0B 0106 B0A

MM71 0220 B07 0220 B08 0220 B07

MP61 0116 B17 0116 B21 0116 B17

Table 5. EFI Firmware for Security Update 2017-001 for OS X 10.10

This table reflects EFI firmware contained in the Security Update 2017-001 for OS X 10.10 (El Capitan),

showing the one-to-one match between its EFI binary versions and the versions shipped with the security

update two versions prior.

48

Mac
Model

Security Update 2017-001
(10.10)
[Released March 27, 2017]

Security Update 2016-007
(10.10)
[Released Dec 13, 2016]

Security Update 2016-006
(10.10)
[Released Oct 24, 2016]

IM121 0047 23B 0047 25B 0047 23B

IM131 010A B09 010A B0A 010A B09

IM141 0118 B12 0118 B14 0118 B12

IM142 0118 B12 0118 B14 0118 B12

IM143 0118 B12 0118 B14 0118 B12

IM144 0179 B12 0179 B14 0179 B12

IM151 0207 B05 0207 B08 0207 B05

MB81 0164 B09 0164 B19 0164 B09

MBA41 077 B14 077 B15 077 B14

MBA51 00EF B04 00EF B05 00EF B04

MBA61 0099 B20 0099 B23 0099 B20

MBA71 0166 B08 0166 B13 0166 B08

MBP81 0047 2CB 0047 2DB 0047 2CB

MBP91 00D3 B0C 00D3 B0E 00D3 B0C

MBP101 00EE B0A 00EE B0B 00EE B0A

MBP102 0106 B0A 0106 B0B 0106 B0A

MBP111 0138 B16 0138 B18 0138 B16

MBP112 0138 B16 0138 B18 0138 B16

MBP114 0172 B06 0172 B10 0172 B06

MBP121 0167 B14 0167 B18 0167 B14

MM51 0077 B14 0077 B15 0077 B14

MM61 0106 B0A 0106 B0B 0106 B0A

MM71 0220 B06 0220 B08 0220 B06

MP61 0116 B16 0116 B21 0116 B16

Table 6. EFI Versions Patched For the CVE-2014-4498 Vulnerability and Observed Anomalies

Vulnerability / CVE : Thunderstrike 1

CVE Number(s) CVE-2014-4498

Updates Containing Patch: 10.10.2
Security Update 2015-001 (10.8, 10.9)

49

Date of Update(s): 2015/01/27

Mac Model EFI Version Update(s) Containing EF

iMac14,1 IM141_0118_B09

10.10.2
Security Update 2015-001 (10.8,
10.9)

iMac14,2 IM142_0118_B09

10.10.2
Security Update 2015-001 (10.8,
10.9)

iMac14,3 IM143_0118_B09

10.10.2
Security Update 2015-001 (10.8,
10.9)

iMac14,4 IM144_0179_B08

10.10.2
Security Update 2015-001 (10.8,
10.9)

iMac15,1 IM151_0207_B01

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookAir6,1 MBA61_0099_B18

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookAir6,2 MBA61_0099_B18

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookPro10,1 MBP101_00EE_B07

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookPro10,2 MBP102_0106_B07

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookPro11,1 MBP111_0138_B14

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookPro11,2 MBP112_0138_B14

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacBookPro11,3 MBP112_0138_B14

10.10.2
Security Update 2015-001 (10.8,
10.9)

Macmini7,1 MM71_0220_B01

10.10.2
Security Update 2015-001 (10.8,
10.9)

MacPro6,1 MP61_0116_B11
10.10.2
Security Update 2015-001 (10.8,

50

10.9)

MacPro6,2 MP61_0116_B11

10.10.2
Security Update 2015-001 (10.8,
10.9)

Table 7. EFI Versions Patched for CVE-2015-3692 & CVE-2015-3692 and Observed Anomalies

Vulnerability: Thunderstrike 2

CVE Number(s): CVE-2015-3692
CVE-2015-3693

Date of Vulnerability/CVE:

Updates Containing Patch: 10.10.4
Security Update 2015-005 (10.8,
10.9)
EFI Security Update 2015-001

Date of Update: 2015/06/30
2015/06/30 (EFI update)

Mac Model EFI Version Update(s) Containing EFI

iMac12,1 IM121_0047_21B

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac12,2 IM121_0047_21B

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac13,1 IM131_010A_B08

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac13,2 IM131_010A_B08

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac14,1 IM141_0118_B11

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac14,2 IM142_0118_B11

10.10.4, Secuity Update
2015-005
EFI Update 2015-001

iMac14,3 IM143_0118_B11
10.10.4, Security Update
2015-005

51

EFI Update 2015-001

iMac14,4 IM144_0179_B10

10.10.4, Security Update
2015-005
EFI Update 2015-001

iMac15,1 IM151_0207_B03 10.10.4, EFI Update 2015-001

MacBook8,1 MB81_0164_B06 10.10.4, EFI Update 2015-001

MacBookAir4,1 MBA41_0077_B12

10.10.4, Security
Update2015-005
EFI Update 2015-001

MacBookAir4,2 MBA41_0077_B12

10.10.4, Security
Update2015-005
EFI Update 2015-001

MacBookAir5,1 MBA51_00EF_B03

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookAir5,2 MBA51_00EF_B03

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookAir6,1 MBA61_0099_B19

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookAir6,2 MBA61_0099_B19

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookAir7,1 MBA71_0166_B06

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro8,1 MBP81_0047_2AB

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro8,2 MBP81_0047_2AB

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro8,3 MBP81_0047_2AB

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro9,1 MBP91_00D3_B0B

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro9,2 MBP91_00D3_B0B
10.10.4, Security Update
2015-005

52

EFI Update 2015-001

MacBookPro10,1 MBP101_00EE_B09

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro10,2 MBP102_0106_B08

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro11,1 MBP111_0138_B15

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro11,2 MBP112_0138_B15

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro11,3 MBP112_0138_B15

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro11,4 MBP114_0172_B04

10.10.4, Security Update
2015-005
EFI Update 2015-001

MacBookPro12,1 MBP121_0167_B07

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini5,1 MM51_0077_B12

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini5,2 MM51_0077_B12

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini5,3 MM51_0077_B12

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini6,1 MM61_0106_B08

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini6,2 MM61_0106_B08

10.10.4, Security
Update2015-005
EFI Update 2015-001

Macmini7,1 MM71_0220_B03

10.10.4, Security
Update2015-005
EFI Update 2015-001

MacPro6,1 MP61_0116_B15
10.10.4, Security
Update2015-005

53

EFI Update 2015-001

Table 8 - EFI Versions Patching the CVE-2015-4860 Vulnerability and Observed Anomalies

Vulnerability: A local authenticated attacker may be able to execute arbitrary
code with the privileges of system firmware, potentially allowing for
persistent firmware level rootkits, bypassing of Secure Boot, or
permanently DoS'ing the platform.

CVE Number(s) CVE-2014-4860

Update containing patch: 10.11.1
Security Update 2015-004 (10.10)
EFI Sec Update 2015-002

Date of Update: 2015/10/21

Mac Model EFI Version Update(s) Containing EFI

iMac11,1 IM111_0034_04B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac11,2 IM112_0057_03B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac11,3 IM112_0057_03B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac12,1 IM121_0047_21B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac12,2 IM121_0047_B21

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac13,1 IM131_010A_B09

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac13,2 IM131_010A_B09

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac13,1 IM131_010A_B09
10.11.1
Security Update 2015-004

54

EFI Sec Update 2015-002

iMac14,1 IM141_0118_B12

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac14,2 IM142_0118_B12

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac14,3 IM143_0118_B12

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac14,4 IM144_0179_B12

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

iMac15,1 IM151_0207_B05
10.11.1
Security Update 2015-004

iMac16,1 IM161_0207_B01 10.11.1

iMac17,1 IM171_0105_B04 10.11.1

MacBook8,1 MB81_0164_B09
10.11.1
Security Update 2015-004

MacBook8,2 MB81_0164_B09
10.11.1
Security Update 2015-004

MacBook8,3 MB81_0164_B09
10.11.1
Security Update 2015-004

MacBookAir4,1 MBA41_0077_B12
10.11.1
EFI Sec Update 2015-002

MacBookAir4,2 MBA41_0077_B12
10.11.1
EFI Sec Update 2015-002

MacBookAir5,1 MBA51_00EF_B04

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookAir5,2 MBA51_00EF_B04

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookAir6,1 MBA61_0099_B20

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookAir6,2 MBA61_0099_B20

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookAir7,1 MBA71_0166_B08 10.11.1

55

Security Update 2015-004

MacBookAir7,2 MBA71_0166_B08
10.11.1
Security Update 2015-004

MacBookPro6,1 MBP61_0057_11B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro6,2 MBP61_0057_11B

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro8,1 MBP81_0047_2AB
10.11.1
EFI Sec Update 2015-002

MacBookPro8,2 MBP81_0047_2AB
10.11.1
EFI Sec Update 2015-002

MacBookPro8,3 MBP81_0047_2AB
10.11.1
EFI Sec Update 2015-002

MacBookPro9,1 MBP91_00D3_B0C

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro9,2 MBP91_00D3_B0C

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro10,1 MBP101_00EE_B0A

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro10,2 MBP102_0106_B0A

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro11,1 MBP111_0138_B16

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro11,2 MBP112_0138_B16

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro11,3 MBP112_0138_B16

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

MacBookPro11,4 MBP114_0172_B06
10.11.1
Security Update 2015-004

MacBookPro11,5 MBP114_0172_B06
10.11.1
Security Update 2015-004

MacBookPro12,1 MBP121_0167_B14 10.11.1

56

Security Update 2015-004

Macmini5,1 MM51_0077_B12
10.11.1
EFI Sec Update 2015-002

Macmini5,2 MM51_0077_B12
10.11.1
EFI Sec Update 2015-002

Macmini5,3 MM51_0077_B12
10.11.1
EFI Sec Update 2015-002

Macmini6,1 MM61_0106_B0A

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

Macmini6,2 MM61_0106_B0A

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

Macmini7,1 MM71_0220_B06
10.11.1
Security Update 2015-004

MacPro6,1 MP61_0116_B16

10.11.1
Security Update 2015-004
EFI Sec Update 2015-002

Table 9 - EFI Versions Patching the CVE-2016-7585 Vulnerability and Observed Anomalies

Vulnerability: DMA Attack

CVE Number(s) CVE-2016-7585

Date of Vulnerability/CVE:

Update containing patch: 10.12.4
Sec Update 2017-001 (10.11, 10.10)

Date of Update: 2017/03/27

Mac Model EFI Version Update(s) Containing EFI

iMac11,1 IM111_0034_04B
10.12.4
Sec Update 2017-001 (10.11, 10.10)

iMac11,2 IM112_0057_B09 10.12.4

 IM112_0057_03B Sec Update 2017-001 (10.11, 10.10)

iMac11,3 IM112_0057_B09 10.12.4

 IM112_0057_03B Sec Update 2017-001 (10.11, 10.10)

57

iMac12,1 IM121_0047_B29 10.12.4

 IM121_0047_B23 Security Update 2017-001 (10.11)

 IM121_0047_23B Security Update 2017-001 (10.10)

iMac12,2 IM121_0047_B29 10.12.4

 IM121_0047_B23
Security Update 2017-001 (10.11,
10.10)

iMac13,1 IM131_010A_B11 10.12.4

 IM131_010A_B09
Security Update 2017-001 (10.11,
10.10)

iMac13,2 IM131_010A_B11 10.12.4

 IM131_010A_B09
Security Update 2017-001 (10.11,
10.10)

iMac14,1 IM141_0118_B20 10.12.4

 IM141_0118_B13 Security Update 2017-001 (10.11)

 IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,2 IM142_0118_B20 10.12.4

 IM141_0118_B13 Security Update 2017-001 (10.11)

 IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,3 IM143_0118_B20 10.12.4

 IM141_0118_B13 Security Update 2017-001 (10.11)

 IM141_0118_B12 Security Update 2017-001 (10.10)

iMac14,4 IM144_0179_B21 10.12.4

 IM141_0118_B13 Security Update 2017-001 (10.11)

 IM141_0118_B12 Security Update 2017-001 (10.10)

iMac15,1 IM151_0207_B16 10.12.4

 IM151_0207_B06 Security Update 2017-001 (10.11)

 IM151_0207_B05 Security Update 2017-001 (10.10)

iMac16,1 IM161_0207_B11 10.12.4

 IM161_0207_B03 Security Update 2017-001 (10.11)

iMac16,2 IM162_0207_B11 10.12.4

iMac17,1 IM171_0105_B20 10.12.4

 IM171_0105_B08 Security Update 2017-001 (10.11)

MacBook7,1 MB71_0039_B15 10.12.4

MacBook8,1 MB81_0164_B25 10.12.4

 MB81_0164_B14 Security Update 2017-001 (10.11)

58

 MB81_0164_B09 Security Update 2017-001 (10.10)

MacBook9,1 MB91_0154_B17 10.12.4

 MB91_0154_B05 Security Update 2017-001 (10.11)

MacBookAir3,1 MBA31_0061_B0E 10.12.4

MacBookAir4,1 MBA41_0077_B1B 10.12.4

 MBA41_0077_B14
Security Update 2017-001 (10.11,
10.10)

MacBookAir4,2 MBA41_0077_B1B 10.12.4

 MBA41_0077_B14
Security Update 2017-001 (10.11,
10.10)

MacBookAir5,1 MBA51_00EF_B0C 10.12.4

 MBA51_00EF_B04
Security Update 2017-001 (10.11,
10.10)

MacBookAir5,2 MBA51_00EF_B0C 10.12.4

 MBA51_00EF_B04
Security Update 2017-001 (10.11,
10.10)

MacBookAir6,1 MBA61_0099_B33 10.12.4

 MBA61_0099_B22 Security Update 2017-001 (10.11)

 MBA61_0099_B20 Security Update 2017-001 (10.10)

MacBookAir6,2 MBA61_0099_B33 10.12.4

 MBA61_0099_B22 Security Update 2017-001 (10.11)

 MBA61_0099_B20 Security Update 2017-001 (10.10)

MacBookAir7,1 MBA71_0166_B19 10.12.4

 MBA71_0166_B12 Security Update 2017-001 (10.11)

 MBA71_0166_B08 Security Update 2017-001 (10.10)

MacBookAir7,2 MBA71_0166_B19 10.12.4

 MBA71_0166_B12 Security Update 2017-001 (10.11)

 MBA71_0166_B08 Security Update 2017-001 (10.10)

MacBookPro6,1 MBP61_0057_B17 10.12.4

 MBP61_0057_11B
Security Update 2017-001 (10.11,
10.10)

MacBookPro6,2 MBP61_0057_B17 10.12.4

 MBP61_0057_11B
Security Update 2017-001 (10.11,
10.10)

MacBookPro7,1 MBP71_0039_B15 10.12.4

MacBookPro8,1 MBP81_0047_32B 10.12.4

59

 MBP81_0047_2CB
Security Update 2017-001 (10.11,
10.10)

MacBookPro8,2 MBP81_0047_32B 10.12.4

 MBP81_0047_2CB
Security Update 2017-001 (10.11,
10.10)

MacBookPro8,3 MBP81_0047_32B 10.12.4

 MBP81_0047_2CB
Security Update 2017-001 (10.11,
10.10)

MacBookPro9,1 MBP91_00D3_B15 10.12.4

 MBP91_00D3_B0D Security Update 2017-001 (10.11)

 MBP91_00D3_B0C Security Update 2017-001 (10.10)

MacBookPro9,2 MBP91_00D3_B15 10.12.4

 MBP91_00D3_B0D Security Update 2017-001 (10.11)

 MBP91_00D3_B0C Security Update 2017-001 (10.10)

MacBookPro10,1 MBP101_00EE_B12 10.12.4

 MBP101_00EE_B0A
Security Update 2017-001 (10.11,
10.10)

MacBookPro10,2 MBP102_0106_B12 10.12.4

 MBP101_00EE_B0A
Security Update 2017-001 (10.11,
10.10)

MacBookPro11,1 MBP111_0138_B25 10.12.4

 MBP111_0138_B17 Security Update 2017-001 (10.11)

 MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,2 MBP112_0138_B25 10.12.4

 MBP111_0138_B17 Security Update 2017-001 (10.11)

 MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,3 MBP112_0138_B25 10.12.4

 MBP111_0138_B17 Security Update 2017-001 (10.11)

 MBP111_0138_B16 Security Update 2017-001 (10.10)

MacBookPro11,4 MBP114_0172_B16 10.12.4

 MBP114_0172_B09 Security Update 2017-001 (10.11)

 MBP114_0172_B06 Security Update 2017-001 (10.10)

MacBookPro11,5 MBP114_0172_B16 10.12.4

 MBP114_0172_B09 Security Update 2017-001 (10.11)

 MBP114_0172_B06 Security Update 2017-001 (10.10)

60

MacBookPro12,1 MBP121_0167_B24 10.12.4

 MBP121_0167_B17 Security Update 2017-001 (10.11)

 MBP121_0167_B14 Security Update 2017-001 (10.10)

MacBookPro13,1 MBP131_0205_B15 10.12.4

MacBookPro13,2 MBP132_0226_B15 10.12.4

MacBookPro13,3 MBP133_0226_B15 10.12.4

Macmini4,1 MM41_0042_B09 10.12.4

Macmini5,1 MM51_0077_B1B 10.12.4

 MM51_0077_B14
Security Update 2017-001 (10.11,
10.10)

Macmini5,2 MM51_0077_B1B 10.12.4

 MM51_0077_B14
Security Update 2017-001 (10.11,
10.10)

Macmini5,3 MM51_0077_B1B 10.12.4

 MM51_0077_B14
Security Update 2017-001 (10.11,
10.10)

Macmini6,1 MM61_0106_B12 10.12.4

 MM61_0106_B0A
Security Update 2017-001 (10.11,
10.10)

Macmini6,2 MM61_0106_B12 10.12.4

 MM61_0106_B0A
Security Update 2017-001 (10.11,
10.10)

Macmini7,1 MM71_0220_B14 10.12.4

 MM71_0220_B07 Security Update 2017-001 (10.11)

 MM71_0220_B06 Security Update 2017-001 (10.10)

MacPro6,1 MP61_0116_B25 10.12.4

 MP61_0116_B17 Security Update 2017-001 (10.11)

 MP61_0116_B16 Security Update 2017-001 (10.10)

Table 10. Highest Released Versions of EFI Firmware, Segmented by Major OS Version and Mac
Model

 10.10.x 10.11.x 10.12.x 10.13.x

IM101 00CF 00B 00CF 00B

IM111 0034 04B 0034 04B 0037 00B 0037 00B

61

IM112 0057 03B 0057 09B 005B 00B 005B 00B

IM121 0047 25B 0047 29B 004D 00B 004D 00B

IM131 010A B0A 010A B11 010F B00 010F B00

IM141 0118 B14 0118 B20 0122 B00 0123 B00

IM142 0118 B14 0118 B20 0122 B00 0123 B00

IM143 0118 B14 0118 B20 0122 B00 0123 B00

IM144 0179 B14 0179 B21 0183 B00 0183 B00

IM151 0207 B08 0207 B16 0211 B00 0211 B00

IM161 - 0207 B11 0212 B00 0212 B00

IM162 - 0207 B11 0212 B00 0212 B00

IM171 - 0105 B20 0110 B00 0110 B00

IM181 - - 0151 B00 0151 B00

IM183 - - 0151 B00 0151 B00

MB61 - - 00CB 00B 00CB 00B

MB71 - - 003D 00B 003D 00B

MB81 0164 B19 0164 B25 0168 B00 0168 B00

MB91 - 0154 B17 0159 B00 0159 B00

MB101 - - 0154 B00 0154 B00

MBA31 0067 00B 0067 00B

MBA41 0077 B15 0077 B1B 007B B00 007B B00

MBA51 00EF B05 00EF B0C 00F4 B00 00F4 B00

MBA61 0099 B23 0099 B33 0103 B00 0103 B00

MBA71 0166 B13 0166 B19 0171 B00 0171 B00

MBP61 0057 11B 0057 17B 005A 00B 005A 00B

MBP71 - - 003D 00B 003D 00B

MBP81 0047 2DB 0047 32B 004D 00B 004D 00B

MBP91 00D3 B0E 00D3 B15 00D7 B00 00D7 B00

MBP101 00EE B0B 00EE B12 00F2 B00 00F2 B00

MBP102 0106 B0B 0106 B12 010B B00 010B B00

MBP111 0138 B18 0138 B25 0142 B00 0142 B00

MBP112 0138 B18 0138 B25 0142 B00 0142 B00

MBP114 0172 B10 0172 B16 0177 B00 0177 B00

MBP121 0167 B18 0167 B24 0171 B00 0171 B00

MBP131 - - 0212 B00 0212 B00

62

MBP132 - - 0233 B00 0233 B00

MBP133 - - 0233 B00 0233 B00

MBP141 - - 0167 B00 0167 B00

MBP142 - - 0167 B00 0167 B00

MBP143 - - 0167 B00 0167 B00

MM41 - - 0045 00B 0045 00B

MM51 0077 B15 0077 B1B 007B B00 007B B00

MM61 0106 B0B 0106 B12 010B B00 010B B00

MM71 0220 B08 0220 B14 0224 B00 0226 B00

MP51 - - 0084 00B 0084 00B

MP61 0116 B21 0116 B25 0120 B00 0120 B00

Table 11. Potentially Vulnerable Mac Models With Low Build Numbers

This table lists Mac models from the real world dataset that have only been observed with one, two or three
updates with low build numbers. This suggests they haven’t been updated from the versions of firmware they
were originally shipped with from the factory - making them likely to contain unpatched vulnerabilities.

Mac Model EFI Versions Observed in the Real World Data

IM101 IM101.00CC.B00

IM71 IM71.007A.B00 IM71.007A.B01 IM71.007A.B03

IM81 IM81.00C1.B00

IM91 IM91.008D.B00 IM91.008D.B04 IM91.008D.B08

MB51 MB51.007D.B03 MB51.0073.B06

MB52 MB52.0088.B06

MB61 MB61.00C8.B00

MBA21 MBA21.0075.B03 MBA21.0075.B05

MBP31 MBP31.0070.B07

MBP41 MBP41.00C1.B03

MBP51 MBP51.007E.B05 MBP51.007E.B06

MBP52 MBP52.008E.B05

MBP53 MBP53.00AC.B03

63

MBP55 MBP55.00AC.B03

MM31 MM31.00AD.B00 MM31.0081.B06

MP31 MP31.006C.B02 MP31.006C.B05

MP41 MP41.0081.B04 MP41.0081.B07 MP41.0081.B08

MP51 MP51.007F.B00 MP51.007F.B01 MP51.007F.B03

Table 12 - Heat Map of EFI Updates for Public Vulnerabilities

Please see: http://duo.sc/EFI-heatmap

64

Appendix B
The disclosure timeline related to the findings of our research and our communications with Apple are

below, Duo Labs’ responsible disclosure policy and further information can be found here

https://duo.com/labs/disclosure.

Date Action

June 26 2017 Radar item 32995209 raised citing the incorrect CVE being cited for issue
APPLE-SA-2015-10-21-4 in the release notes of OS X El Capitan 10.11.1 and Security
Update 2015-007

June 28 2017 Initial contact with Apple sending a PDF summary of the research findings as well as
offers of discussing the problems and extra context

July 14 2017 Follow up email sent to Apple contacts enquiring if Apple had any questions or
concerns we may be able to help with. We also requested technical clarification on
a point within the 10.13 beta 3 release note.

August 2 2017 Follow up email sent to Apple contacts enquiring if Apple had any questions or
concerns we may be able to help with. August 31, 2017 was given as the date after
which our findings would no longer be private.

September 5 2017 Follow up email sent to Apple contacts enquiring if Apple had any questions or
concerns we may be able to help with. Informed Apple that a presentation of our
research would be publicly released at Ekoparty on September 29, 2017 in Buenos
Aires.

September 5 2017 Draft version of the research paper sent to Apple to allow them to see its content
and respond with any questions before it’s released publicly

September 5 2017 Apple product security team reached out to ask for further technical details; the
draft research paper was sent over to them.

September 11 2017 Follow up email sent to Apple product security team enquiring if Apple had any
questions or concerns we may be able to help with.

September 15 2017 Follow up email sent to Apple product security team enquiring if Apple had any
questions or concerns we may be able to help with.

September 16 2017 Response from Apple product security team acknowledging receipt and setting up a
phone call to discuss on September 19, 2017.

September 19 2017 Phone call with the Apple product security team discussing the research and the
content of the paper.

September 29 2017 First public release of this paper and presentation discussing the work given at
Ekoparty. 90+ days since initially contacting Apple with details of the research
findings.

65

https://duo.com/labs/disclosure
https://openradar.appspot.com/32995209

EOF

66

