
CTX: Eliminating BREACH with

Context Hiding

Dimitris Karakostas∗

University of Athens
dimit.karakostas@gmail.com

Aggelos Kiayias∗

University of Edinburgh
akiayias@inf.ed.ac.uk

Eva Sarafianou∗

University of Athens
eva.sarafianou@gmail.com

Dionysis Zindros∗

University of Athens
dionyziz@di.uoa.gr

Abstract

The BREACH attack presented at Black Hat USA 2013 has still
not been mitigated, even in the latest versions of TLS, despite the new
developments and optimizations presented at Black Hat Asia 2016.
BREACH and similar attacks pose a threat against all practical web
applications which use compression together with encryption. We
present a generic defense method which eliminates problems that arise
from compression detectability features of existing protocols. We intro-
duce CTX, Context Transformation Extension, a cryptographic method
which defends against BREACH, CRIME, TIME, and any compres-
sion side-channel attack in general. CTX operates at the application
layer and uses context hiding in a per-origin manner to separate secrets
from different origins in order to avoid cross-compressibility.

1 Introduction

In 2012 CRIME [1] showed for the first time that side-channel compression
attacks can be successful against TLS. CRIME targeted HTTPS requests
and has since been mitigated by disabling compression at the TLS level [2].

In 2013 TIME [3] and BREACH [4] introduced an attack vector that
exploited compression on HTTP responses to compromise TLS. This vec-
tor takes advantage of the characteristics of the DEFLATE algorithm [5],
the basis of most compression applications, in order to steal secrets from
applications using stream ciphers.

In 2015 RC4 is considered insecure [6] which forces most websites to use
AES block ciphers. Services like Facebook also tried to prevent BREACH [7]

∗Research supported by ERC project CODAMODA, project #259152.

1



using secret masking, although this method protected CSRF tokens only and
the fundamental aspects of BREACH were still not mitigated.

In 2016, both Rupture [8] and HEIST [9] introduced new threats re-
garding compression side-channel attacks. Rupture showed that BREACH
can evolve to attack major web applications and steal secrets that were not
previously considered as targets of BREACH. It also incorporated statis-
tical methods to bypass noise induced from block ciphers or random data
included in the response plaintext.

HEIST demonstrated that compression-based attacks, such as CRIME
and BREACH, can be performed solely in the browser by a malicious website
or script. It does not require Man-in-the-Middle agents since it abuses the
way responses are sent at the TCP level.

These attack techniques, which pose an imminent threat to online secu-
rity and privacy, have still not been mitigated.

Our work introduces a generic defense method which disqualifies com-
pression detectability features of existing protocols. CTX is a cryptographic
method which defends against any compression side-channel attack. It pre-
vents cross-compressibility by separating the secrets from different origins
and using context hiding in a per-origin manner.

The existing suggested defense for BREACH [10] includes disabling com-
pression or completely bypassing compression, which results in significant
performance penalties. On the other hand, there has not been proposed
a solution that keeps compression intact and solves the security issues. It
is not known if such a solution is even possible. Our method lies between
the two options regarding compression usage. We achieve a good balance
by slightly reducing compression size and time performance while achieving
full security.

We release an open source implementation of CTX in popular web frame-
works both for client-side and server-side web applications. Our implemen-
tation runs at the application layer, is opt-in, and does not require modifi-
cations to web standards or the underlying web server.

We conclude that if secrets are separated by origin at the application level
using the CTX defense, compression side-channel attacks are mitigated.

2 Theoretical analysis

2.1 CTX architecture

CTX depends on separating secrets based on origin. Origin is used to de-
scribe the party that generated the secret. The origin can be either the web
application or a user. A CTX origin should not be confused with origins of
same-origin policy [11], which is a completely different notion. Thus, for any
secrets A and B generated from the same origin, whoever is able to change

2



the secret A can also know the secret B with no violation of the application
privacy contract.

CTX is used to protect HTML and other content-type responses of web
applications as they travel on the network. It protects only HTTPS re-
sponses, not HTTPS requests. The mitigation of the CRIME attack re-
sulted in compressionless HTTPS requests and hence no protection against
compression side-channel attacks is required.

It is up to the application developer to decide which portions of the
response are sensitive and must be protected as secrets. Sensitive data does
not only include high-value secrets such as passwords and CSRF tokens, but
also user data that the developer wishes to keep private. Some examples are
the bodies of email messages in Gmail, the chat messages received or sent to
a friend on Facebook, the contents of documents and spreadsheets in Google
Docs and the list of online friends on Facebook or Google Hangouts, as they
contain all the important contacts of the victim. Practically any piece of
information which is only accessible when logged in is potentially a secret
and should be CTX protected.

The developer should also separate the HTML plaintext into contexts.
Each context contains portions of the plaintext. Some of these contexts
do not typically need compression-security protection, e.g. static HTML
portions that are accessible on a website even when logged out. However,
sensitive data, as mentioned above, require compression-security protection.

The minimum amount of origins is one origin for the entire response,
in which case CTX is not protecting any part of the plaintext, and the
maximum is one origin per character. The latter would result in the best
possible security under CTX, although compression would be effectively dis-
abled possibly resulting in poor performance. This is the case with defenses
such as secret masking.

The portions of the plaintext within contexts of different origin are then
forced to compress separately, i.e. not cross-compress. However, compres-
sion is achieved within each context. In order to acomplish this, CTX gen-
erates a pseudo-random permutation of the secret alphabet for each ori-
gin. The secret alphabet is by default the alphabet of ASCII bytes (0 -
128). In order to randomly permute the secret alphabet, we use the Fisher–
Yates shuffle algorithm [12]. This algorithm puts all the elements into a
hat and continually determines the next element by randomly drawing an
element from the hat until no elements remain. The Fisher–Yates shuffle al-
gorithm produces an unbiased permutation meaning that every permutation
is equally probable.

Secrets are then permuted by the server using the generated permutation
of the corresponding origin prior to TLS encryption and network transmis-
sion. Upon arrival on the client side, the inverse permutation is applied to
decode the secret. The same permutation is applied to all secrets of the
same origin. That way, better compression is achieved intra-origin.

3



Each time the server issues an HTTPS response, new per-origin permu-
tations are generated. The power of the BREACH attack lies to the as-
sumption that we can perform multiple requests to the target website while
the transmitted secret remains the same. Since new alphabet permutations
are generated per HTTPS response, the statistical analysis performed by
Rupture is no longer feasible.

2.2 A detailed example

Each time CTX protects a secret, three parameters need be defined: the
secret, the origin, and the permutation alphabet. In our example we will
use the permutation alphabet of ASCII printable characters, which consist
of ASCII codes 9-13 and 32-126.

The first secret that needs to be protected is the string ”secret1” which
is generated by the origin ”testsorigin1”. In order to protect this secret,
CTX will generate a random permutation of ASCII printable characters.
Each character in the permutation corresponds to a single ASCII printable
character, so that the first character in the permutation corresponds to
ASCII 9 and the last to ASCII 126. CTX will then apply the permutation
on the secret. Suppose that the correspondence of printable-permutation
characters is:

· s → 0

· e → f

· c → )

· r → 4

· t → *

· 1 → l

(...)

The permuted secret will then be ”0f)40*l”.
A second secret is the string ”secret2” from origin ”testorigin2”. Follow-

ing the same procedure, CTX will generate a permutation which is described
as follows:

· s → t

· e → 9

· c → (

· r → l

4



· t → j

· 2 → 2

(...)

The second permuted secret will then be ”t9(l9j2”.
Permutations are randomly generated per origin, so the two permu-

tations for ”testorigin1” and ”testorigin2” are not dependent and each is
needed in order to reverse permute the corresponding secret.

3 Implementation

Our open source implementation of CTX can be used on popular web frame-
works for both client-side and server-side web applications.

3.1 Server-side

3.1.1 CTX protected HTML response

The HTML response plaintext consists of a plain HTML structure along
with CTX-transformed parts. Each CTX part is annotated using an HTML
div tag structured as: <div data−ctx−origin=’i’>xyx</div> where i is an
integer origin ID and xyx the permuted secret after applying permutation
for origin i.

Separately in the same response, a JSON will be included.

[
’ abc ’ ,
’ cab ’ ,
’ bac ’ ,
. . .
]

where ’abc’, ’cab’, ’bac’ are the permutations used to permute secrets of
origin 0, 1, and 2 respectively. The JSON is included in a

<script type=” a p p l i c a t i o n / j son ” id=”ctx−permutat ions ”>

</ script>

tag in the HTML body.

3.1.2 Developer’s actions

We have implemented the server-side CTX defense for the Django [13],
Flask [14], and Node.js [15] web frameworks.

5



A developer should install the CTX package for the corresponding frame-
work in order to use CTX defense. For example, the developer of a Django
project should add django-ctx to the installed apps, add the ctx processor
to the context processors setting and use {% load ctx tags %} to load the
ctx tag library in the template.

In order to protect secrets, they should protect them with the ctx protect
tag {% ctx protect secret origin alphabet %}. The origin and alphabet pa-
rameters are optional. If no such parameters are passed, the alphabet is the
ASCII alphabet and the origin is a randomly generatered id string with 10
lowercase letters.

After all ctx protect tags that use an origin for the first time, the de-
veloper should include the {% ctx permutations %} tag to include the per-
mutations used for each origin. It is proposed that it is included before the
</body> HTML tag.

3.2 Client-side

On the client-side, the browser runs a Javascript library for the inverse
permutation on load. It searches for the tag with id ctx-permutations to
access the JSON table with the stored per-origin permutations and performs
the inverse permutation for all ctx tags. The developer should add the script
<script src=’ctx.js ’> </script> before the </head> tag.

3.3 Experiments

We have conducted several experiments to evaluate the performance of web
services protected by CTX. The results of these experiments are overwhelm-
ingly positive and should be taken into account when considering incorpo-
rating CTX in a web service.

The CTX parameters that affect performance are basically 4: the number
of origins, the total amount of plaintext response, the amount of secrets in
the response, and the distribution of secrets to origins. Each parameter
affects the performance differently and will be examined thoroughly in the
following sections.

Our experiments focused on each parameter separately, so the results
reflect the performace under each one independently. A combination of the
parameters may result in slightly different results when used in real-world
systems.

In all our tests we use an HTML web page where each secret is a string
of English literature.

3.3.1 Origins

The number of origins mainly affects the overhead of data in the response.
The time overhead was found to be insignificant so it will not be included

6



here. The more origins are used the bigger the response, both compressed
and uncompressed, is expected to be.

In our experiment, we use a 650KB page and a fixed amount of secrets,
which comprise 1% of the page, and tested the use of a number of origins
in the range [0, 50]. The worst case scenario, using 50 origins, resulted
in a 12% overhead in the compressed response. In other words, the CTX-
protected response is expected to be 1.12x the size of the unprotected, which
is practically insignificant considering the security benefits. In comparison,
disabling compression would result in 976.8% overhead.

3.3.2 Total response

The size of the total response affects the impact of CTX on protected secrets.
Time is again not an issue here and will not be described.

Our experiment tests CTX’s performace on web pages ranging from
13KB to 650KB. A base of comparison could be Google Inbox’s main page,
which is roughly 550KB. We maintain the percentage of secrets and the
origins the same throughout the test to 1% and 50 respectively.

Our results show that as the response grows larger, the overhead caused
by CTX is minimized. Specifically, for a typical 13KB web page, protecting
1% of it with CTX would add a 228% overhead. A 650KB page on the
other hand would suffer an overhead of only 13%. Disabling compression
alltogether would add overhead that ranges from 500% to 91% for the same
web pages.

3.3.3 Amount of secrets

The percentage of the web page that is protected by CTX also affects the
application’s performance. In this case, we consider a 650KB web page, a
size representative of Facebook’s home page, which is protected by CTX
using 50 origins.

Our experiment tests the effect when 1% up to 50% of the web page is
protected. Results show that the bigger the protected part is, the bigger the
effect of CTX on performance will be. Specifically, protecting 1% of such a
web page would result in a 5% size overhead, whereas protecting 50% of it
would result in a 35% overhead.

This is also the only test that demonstrated a time overhead. Specifically,
the 1% case introduces a 1ms overhead, while the 50% case adds 45ms of
server-side work.

However, it should be noted that our tests are very strict. A typical
website response consists mainly of HTML code or libraries that usually
need not be protected. In this case, the amount of secrets in the response
would not exceed 1% of the total response, in which case the CTX overhead

7



as shown by our experiments is totally acceptable. For example, Facebook
and Gmail typically only need protect approximately 0.5% of the response.

In comparison, disabling compression would again result in 976.8% load
overhead and a network transmittion time overhead that, depending on the
client’s and the server’s network, may be up to seconds.

4 Related Work

Our work is based on both the idea of disabling compression, a successful
security mechanism against all compression attacks, as well as the idea of
masking secrets, also a perfectly successful security mechanism, employed
by Facebook and others. However, these two previous defense ideas lack
in compression performance, which we improve on and provide a balance
between security and performance. Our implementation is inspired by the
authors of the original BREACH paper who wrote in the defenses section
”One approach that completely solves the problem is to put user input in
a completely different compression context than that of application secrets.
Depending on the nature of the application and its implementation, this
may be very tedious and highly impractical.” This was a good idea, which
was not elaborated further by Prado etc.

SafeDeflate [16], published in 2016, is also a proposal to prevent BREACH
and CRIME by eliminating compression detectability. It is a modification
of the standard Deflate algorithm in which compression ratio does not leak
information about secret tokens. However, the size for the dataset com-
pressed when using SafeDeflate is 200%-400% times larger than the size of
the compressed dataset if the standard Deflate algorithm is used. Our im-
plementation increases the size by only 5% of the non-CTX protected size.

5 Future Work

CTX defense is the natural conclusion of BREACH, TIME, Rupture, and
any compression side-channel attack, since it combines security with com-
pressibility. CTX should be implemented for other web frameworks, such as
Ruby on Rails and Lavarel, and can be extended for other encoding stan-
dards, such as UTF-8. CTX can also be implemented for web frameworks
which build API services and return other data formats like JSON. This
way the data served from the database to the user will be transmitted over
the network in a secure way.

References

[1] J. Rizzo, T. Duong: The CRIME attack, Ekoparty, 2012

8



[2] D. Goodin, Crack in Internets foundation of trust allows HTTPS session
hijacking, Ars Technica, 2012

[3] Beery, Tal, and Amichai Shulman. ”A perfect CRIME? Only TIME will
tell.” Black Hat Europe 2013 (2013).

[4] Y. Gluck, N. Harris, A. Prado, BREACH: Reviving the CRIME attack,
Black Hat USA, 2013

[5] P. Deutsch, DEFLATE Compressed Data Format Specification, RFC
1951, 1996

[6] A.Popov, Prohibiting RC4 Cipher Suites, RFC 7465, 2015

[7] Chad Parry, Christophe Van Gysel, Preventing a BREACH Attack,
2014

[8] D.Karakostas, D.Zindros: Practical New Developments in the
BREACH Attack, Black Hat Asia, 2016

[9] M. Vanhoef, Tom Van Goethem: HEIST: HTTP Encrypted Informa-
tion can be 220 Stolen through TCP-windows, Black Hat USA 2016

[10] Jacob Kaplan-Moss, Security advisory: BREACH and Django, 2013

[11] A. Barth, The Web Origin Concept, RFC6454, 2011

[12] R. Fisher, F. Yates: Statistical tables for biological, agricultural and
medical research, 1938

[13] [online] URL: https://www.djangoproject.com/ [cited November
2106]

[14] [online] URL: http://flask.pocoo.org/ [cited November 2106]

[15] [online] URL: https://nodejs.org/en/ [cited November 2106]

[16] M. Zielinski, SafeDeflate: compression without leaking secrets, 2016

9


