Another Brick off The Wall:
Deconstructing Web Application
Firewalls Using Automata Learning

George Argyros, loannis Stais

Suman Jana, Ange

OS

Joint Work with:

D). Keromytis, Aggelos Kiayias

Overview

e A journey in the world of:
- Code Injection attacks.
- Web Application Firewalls.
- Parsers.
- Learning algorithms.

 And newly discovered vulnerabilities :)

Code Injection Attacks

» SQLi, XSS, XML, etc... “ .
« Not going anywhere anytime soon. - e
 14% Increase In total web attacks in n
Q2 2016 [1] "
 150% - 200% increase in SQLI and I
. H_NF=

2015'4
o

2014
2015

XSS attacks in 2015 [2]

2015
2013
2015|
2013

Figure 1: Comparison of Number of Incidents Between Years

[1] akamai’s [state of the internet] / security Q2 2016 executive review
[2] Imperva: 2015 Web Application Attack Report (WAAR)

Code Injection is a Parsing
Problem

Input data Injection attack i amme
Web Application Rugtim%

Code Injection is a Parsing
Problem

Input data is parsed

/ incorrectly

Input data Injection attack i amme
Web Application » Rugtim%

Code Injection is a Parsing
Problem

Input data is parsed

/ iIncorrectly

Input data Injection attack i amme
Web Application » Rugtim%

Web application parsers are doing a really baad

job In parsing user iInputs.

Wepb Application rirewalls

(or solving parsing problems with parsing)

Web Application Firewalls

Kl Barracuda

 Monitor traffic at the Application
Layer: Both HI' TP Requests and
Hesponses.

C|tr>< NetScaler 77PHPIDS
modsecu rity

en Source Web Application Firewall

* Detect and Prevent Attacks. ~—_ -
-

» Cost-effective compliance with PCI Securesphere s
DSS requirement 6.6 (1]

[1] PCI DSS v3.2

WAFS Internals

User m .. .x X
Input J 9

WAFS Internals

<ScRipt>alert(1);</ScRipT>

User m .. .x X
Input J 9

WAFS Internals

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

User X - ., X
Input J 9

WAFS Internals

<script>alert(1);</script>
Matched Rule:
<script>.*</script>

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

User X - n X
Input J 9

WAFS Internals

<script>alert(1);</script>
Matched Rule:
<script>.*</script>

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

User
Input

Attack

Rulesets

e 4 Normalization -
' Matching

Mitigation

WAFS Internals

<script>alert(1);</script>
Matched Rule:
<script>.*</script>

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

r N
U S e — Normalization I\F/l% ;![i?ﬂergs o M/IAJ[\J[ta(t:k N
| n p u-t 9 1galio

Event
Correlation

Tokenising

WAFS Internals

<script>alert(1);</script>
Matched Rule:
<script>.*</script>

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

r N
U S e — Normalization I\F/l% ;![i?ﬂergs o M/IAJ[\J[ta(t:k N
| n p u-t 9 1galio

1.<script>
2. alert(1);

3.</script> Tokenis Event
- cash Correlation

WAFS Internals

<script>alert(1);</script>
Matched Rule:
<script>.*</script>

<script>alert(1);</script>

<ScRipt>alert(1):</ScRipT> Lower Case

[
| n p u-t 9 1galio

1.<script> 1. 4 Rules Matched
2. alert(1); 2. Session/User history
3.</script> Event

- asnoee Correlation

WAF Rulesets

o Signatures: Sirings or Reqgular Expressions

—

—

E.g., [PHPIDS Rule 54| Detects Postgres pg_sleep injection, waitfor delay attacks and
database shutdown attempits:

(7:select\s*pg_sleep)|(?:waitfor\s*delay\s?'+1s?\d) |(?:;\s*shutdown\s*(?:; |-- | #|N*[{))

WAF Rulesets

o Signatures: Sirings or Reqular Expressions

* Rules: Logical expressions and Condition/Control Variables

—.0., Modsecurity CRS Rule 981254

SecRule REQUEST_COOKIES|!IREQUEST_COOKIES./ _utm/|!REQUEST_COOKIES:/
_pk_ret/|REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS |XML:/* "(?i:(?:select\s*?
pg_sleep)|(?:waitfor\s*?delay\s?[\"" "'[+\s?\d)|(?:;\s*?shutdown|s*?(?:, |--|#|W*|{)))" “phase:
2 capture,t:none,t:urlDecodeUni,block, setvar:tx.sql_injection_score=
+1,setvar:tx.anomaly_score=+ %{tx.critical_anomaly_score},setvar: tx. %{tx.msg/-

OWASP_CRS/WEB_ATTACK/SQLI-%{matched_var_name}=%{tx.0}"

WAF Rulesets

o Signatures: Sirings or Regular Expressions
* Rules: Logical expressions and Condition/Control Variables

* Virtual Patches: Application Specific Patches

—.0., ModSecurity: Turns off autocomplete for the forms on login and signup pages

By
C

Sec
Sec
Sec

e REQUEST_METHOD "@streq GET" "chain”
e STREAM_OUTPUT_BODY "@rsub s/<form /<form autocomplete=\"off\" /*

e REQUEST_URI "A(Vlogin|\/signup)" "id:1000,phase:4,chain,nolog,pass"

A
-

A
-

WAF Rulesets

Signatures: Strings or Reqgular Expressions

Rules: Logical expressions and Condition/Control Variables
Virtual Patches: Application Specific Patches

PHPIDS has more than 420K states

Shared between different WAFs and Log Auditing Software: PHPIDS,
Expose, ModSecurity

Wny Bypasses £Xxist

Whny Bypasses Exist

- Simple hacks:
* [ack of support for different protocols, encodings, contents, etc

* Restrictions on length, character sets, byte ranges, types of
parameters, etc

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

PHPIDS 0.7.0

User
Input

Rulesets

e d Normalization SEuseem

Matching

y > ’ 77

Wny Bypasses £Xxist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

PHPIDS 0.7.0

User
Input

Rulesets
Matching

B Normalization Seeueeem.

y > ’ 77

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

PHPIDS 0.7.0 g >
MATCHED!

User
Input

Rulesets
Matching

e d NOrmalization (.

N \"\s*(srclstylelon\w+)\s*=\s*\")

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

MATCHED!

User
Input

Rulesets
Matching

e d NOrmalization (.

N \"\s*(srclstylelon\w+)\s*=\s*\")

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

“xpose 2.4.0 g >
MATCHED!

User
Input

Rulesets
Matching

e d NOrmalization (.

N \"\s*(srclstylelon\w+)\s*=\s*\")

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

“xpose 2.4.0 g >
MATCHED!

Input ”

Rulesets

Matching

' —p 7 \"\s*(srclstylelon\w+)\s*=\s*\"})

Whny Bypasses Exist

- Rulesets sharing mistakes:

e Normalisation and Rulesets Fallure

-Xpose 2.4.0
BYPASS!

User
Input

Rulesets

Matching

N \"\s*(srclstylelon\w+)\s*=\s*\")

Whny Bypasses £Xist

- Critical WAF components are not being updated:

 E£.g, ModSecurity libinjection library

None yet

REMOVED commented on Jun 29 owasp-modsecurity-crs contributor

Labels

I've been in touch with Nick recently. He was not able to reproduce the false negative | discovered in False Negative - Evasion

the reddit-XSS (see blogpost). The reason probably being, ModSec forked libinject instead of linking. .
)] o v3.1.0-rc1 Candidate Issue
So we are running on an outdated version of libinject.

Maybe we need a tag to collect all libinject false negatives and forward them upstream in batches. Milestone
' No milestone
REMOVED commented on Jun 29 owasp-modsecurity-crs contributor
Assignees
REMOVED i . . i . . i e . No one aSSigned
‘ ‘ this was a serious concern with how it was used in v2 it being forked. In v3 it is required to

be brought in as a submodule, so before you can compile it you must actually bring in an up to date

~arir Frarm tha rarma Llans i+ta mnamnatiivinan if Al inmiiAa ia imbradii~and it Alaea lhas i+a mAacidiviAans fAr AtdiiatiAana 4 DartICIDantS

Whny Bypasses £Xist

- Critical WAF components are not being updated:

 E£.g, ModSecurity libinjection library

None yet

REMOVED commented on Jun 29 owasp-modsecurity-crs contributor
Labels

I
A kb A~ s ~ ~1 L b IV Y -Yol = _ — = it o L 2~ ~ ~ -~ AP, ~ L ~: A ST~ -) - -
s S < , - E et ahin) L~ 4 SEA~TAT - < S (€ 27T i 4 ; S - v
S = — = —o aise Negative - evasion
q .,
l' ¢
o

the reddit-XSS (see blogpost). The reason probably being, ModSec forked libinject instead of linking. v3.1.0-rc1 Candidate Issue

)

L So we are running on an outdated version of libinject. £
Maybe we need a tag to collect all libinject false negatives and forward them upstream in batches. Milestone
' No milestone
REMOVED commented on Jun 29 owasp-modsecurity-crs contributor neei
ssighees
‘ REMOVED ‘ - . No one assigned
this was a serious concern with how it was used in v2 it being forked. In v3 it is required to

be brought in as a submodule, so before you can compile it you must actually bring in an up to date

~arir Frarm tha rarma Llans i+ta mnamnatiivinan if Al inmiiAa ia imbradii~and it Alaea lhas i+a mAacidiviAans fAr AtdiiatiAana 4 DarthIDantS

Whny Bypasses Exist

- The Real Fundamental Reasons:
* |nsufficient Signatures & Weak Rules

* Detecting vulnerabilities without context iIs HARD

Our Goal

. Formalize knowledge In code injection attacks variations
using context free grammars and automata.

. Use Learning algorithms to expand this knowledge by
inferring system specifications.

Using parsers to
preak parsers

Regular Expressions and
-Inite Automata

Every regular expression can be converted to a
Deterministic Finite Automaton.

A—m

(*Yman — — 0 1

Context Free Grammars

Superset of Regular Expressions £ = N

* Su ular B .

° I =R F>EOpE Non

* Mostly used to write programming E— (E) Terminals
languages parsers. N = NN

 Equivalent to a DFA with a stack. Op -+

Op — -

» Can be used to count. Op — * Terminals

- Example: matching parentheses. Op =/

N — [0-9]

Attack of the Grammars

e Context Free Grammars can be used to encode attack vectors.

 Assume we would like to inject code into the query:

- “SELECT * FROM users WHERE id=%id;”

* [he valid suffixes (injections) for this query can be encoded as a
CFG!

Why should | care”

Cross checking regular expressions with grammars is easy!

SQL Injections WAF Filter

! T

I |
%orr;triﬁél;re; VS Regular Expression F

\4

Find an SQL Injection attack in the Grammar G
which is not rejected by the filter F

However. ..

* |n reality, we do not know the language parsed by most
Implementations.

- MySQL is parsing a different SQL flavor than MS-SQL.
- Browsers are definitely not parsing the HT ML standard.

- WAFs are doing much more than a simple RE matching.

|_earning to Parse

* Our Approach: Use Learning algorithms in order to infer the
specifications of parsers and WAFs.

- Cross check the inferred models for vulnerabilities.

By using learning we can actively figure out important details of the
systems.

|_earning Automata

|_earning Automata

e Active Learning algorithm.

- Instead of learning from corpus of data, query the program
with input of his choice.

 Eventually a model Is generated.

e Discovered inconsistencies of the model i1s used to refine It.

| earning Model

Learning
Algorithm

| earning Model

Membership Query

Learning

Parser P
Algorithm

| earning Model

Membership Query

string s

Learning

Parser P

Algorithm

s s accepted by P?

| earning Model

Membership Query

string s

Learning

Parser P

Algorithm

s s accepted by P?

| earning Model

string s

Learning

Parser P

Algorithm

s s accepted by P?

| earning Model

Equivalence Query

string s

Learning

Parser P

Algorithm

s s accepted by P?

| earning Model

Equivalence Query

string s

Learning

Parser P

Algorithm

s s accepted by P?

. IS H a correct model of P?
Equivalence .
Oracle Yes, or provide counterexample.

| earning Model

string s

Learning

Parser P

Algorithm

s s accepted by P?

. IS H a correct model of P?
Equivalence .
Oracle Yes, or provide counterexample.

| earning DFAS

* Angluin’s algorithm is an active learning algorithm for learning
DFAS.

o |earns the target DFA using a table data structure called the
observation table.

e [et'suse itto learn the regular expression (.*)<a(.”)

- Aggressive filtering of anchor tags.

| earning DFAS

| earning DFAS

Empty string

| earning DFAS

Empty string

Strings for “testing”
> states.
(Distinguishing strings)

| earning DFAS

Strings accessing
different states in the
farget automaton.
(Access Strings)

\

Empty string

Strings for “testing”
> states.
(Distinguishing strings)

| earning DFAS

Strings accessing

different states in the

farget automaton.
(Access Strings)

Strings which
transition from
the above states.

<

‘\

Empty string

Strings for “testing”
> states.
(Distinguishing strings)

| earning DFAS

Strings accessing

different states in the

farget automaton.
(Access Strings)

Strings which
transition from
the above states.

<

‘\

Empty

string

Strings for “testing”

o

g states.
(Distinguishing strings)

An entry is filled by
concatenating the row
and column string anad
filling with the output of

the automaton.

| earning DFAS

Model:
g_0

d <,d Q—O
frans.

| earning DFAS

Model:
g_0

d <,d q—O
frans.

| earning DFAS

Model:
g_0

d <,d q—O
frans.

| earning DFAS

Model: &
>
g_0
d <,d q—o
frans.
larget: <(¢ _ < n

Equivalence Query

d,<

a <.,a
? <
ol —

CE: <aaa<<a Counterexample a Add a new column with
> analysis > oy
character “a” in the OT.

| earning DFAS

Model:

Model:

| earning DFAS

Model:

| earning DFAS

Must be a
hew state

| earning DFAS

Model:

d <,d

| earning DFAS

Model:

d <,d

| earning DFAS

Model: Must be a
hew state

| earning DFAS

Model:

ad <,d
frans.
< q 2
Target' > & » < 3 frans.

GRENIGRIGRE_NIGREIGE M

| earning DFAS

Model:

ad <,d
frans.
< q 2
Target' > & » < 3 frans.

L O | =21 OO0 = 0O |0 My

| earning DFAS

states

Model:

ad <,d
frans.
< q 2
Target' > & » < 3 frans.

L O | =21 OO0 = 0O |0 My

| earning DFAS

states

Model:

d <,d
trans.
< q 2
Target: > & > < 3 tra?ws.

transitions

LI O =21 OO0 =100

| earning DFAS

states

Model:

d <,d
trans.
< q 2
Target: > & > < 3 tra?ws.

transitions

LI O =21 OO0 =100

| earning DFAS

a <.a states
Model: <
>\ £ > < 2 g O
q 1
g_2
g_0
trans.

ad <,d
frans.
< q 2
Target' > & > < 3 frans.

transitions

LI O =21 OO0 =100

| earning DFAS

* This algorithm is inefficient for large alphabets/automata.

* For just one PHPIDS Rule (id. 72):

((\={s}*(toplthis|window|content|self|frames|_content))|(\/{s}*[gimx]*{s}*]
*constructor)|(default{s}+xml{s}+namespace{s}™\=)|(\V/{s} \+[\+]+{s}"\+

WIDI(A Hsh\={s}"script)|(\.{s}
{s)*V))

- /2 states when represented as a DFA.

- The OT will have ~650k entries.

 We need a faster algorithm in order to check real systems!

Symbolic Finite Automata

Efficient modeling of large
alphabets.

We designed a novel,
efficient learning algorithm. b2,0(x) b1.1(2)

Detalls In the whitepaper!

Bootstrapping Automata Learning

Similar concept with seed inputs in fuzzers.

- Provide sample inputs and learning algorithm will
discover additional states Iin the parser.

Utilize previously inferred models, specitications, etc.
Seed inputs are guiding the learning algorithm.

Detalls In the white paper!

Grammar Oriented Filter Auditing
(GOFA)

Grammar Oriented Filter Auditing

 Assume that we are given a grammar with attacks.

 How do we utilize it with the learning algorithm?

Main idea:

Use the grammar to drive the learning procedure.

Grammar Oriented Filter Auditing

Context Free

Grammar G

select_exp: SELECT name
any_all_some: ANY | ALL
column_ref: name

parameter: name

Learning

Algorithm

Grammar Oriented Filter Auditing

Context Free Step 1:
Saiigal 4 | earn a model of the WAF.

select_exp: SELECT name
any_all_some: ANY | ALL
column_ref: name

parameter: name

Learning
Algorithm

Grammar Oriented Filter Auditing

Context Free Step 1:
Saiigal 4 | earn a model of the WAF.

select_exp: SELECT name
any_all_some: ANY | ALL
column_ref: name

parameter: name

Learning g
Algorithm <

Grammar Oriented Filter Auditing

Context Free Step 1:
Saiigal 4 | earn a model of the WAF.

select_exp: SELECT name
any_all_some: ANY | ALL
column_ref: name

parameter: name

Learning
Algorithm <

Grammar Oriented Filter Auditing

Step 2:
Find a vulnerabillity in the model using the grammar.

Learning > _
Algorithm @
y

Context Free VS WAF §
Grammar G Model

Grammar Oriented Filter Auditing

Learning > __
Algorithm P
y

Context Free VS WAF §
Grammar G Model

Grammar Oriented Filter Auditing

Step 3:
Verity WAF vulnerability.

Learning > _
Algorithm P
y

Context Free WAF §
Grammar G VS Model

Grammar Oriented Filter Auditing

Step 3:
Verity WAF vulnerability.

Candidate Bypass
Context Free WAF IB Learning g _
Grammar G RS Model Algorithm B

Grammar Oriented Filter Auditing

Context Free

Grammar G

>

WAF 1§ Learning
VS VRS Algorithm B

Candidate Bypass

Grammar Oriented Filter Auditing

. Step 4:
or refine model and repeat.

Candidate Bypass

Context Free VS WAF B Learning g
Grammar G Model Algorithm P

Grammar Oriented Filter Auditing

. Step 4
or refine model and repeat.

Candidate Bypass

Context Free VS WAF B Learning g
Grammar G Model Algorithm P

I |

counterexample (false positive)

Vulnerabpilities

GOFA SQL Injections

o Grammar for extending search conditions:
select * from users where user = admin and email = $_GET][c]

GOFA SQL Injections

o Grammar for extending search conditions:
select * from users where user = admin and email = $_GET][c]

S: A main

main: search_condition

search_condition: OR predicate | AND predicate

predicate: comparison_predicate | between_predicate | like_predicate | test_for_null | in_predicate
| all_or_any_predicate | existence_test

comparison_predicate: scalar_exp comparison scalar_exp | scalar_exp COMPARISON subquery
between_predicate: scalar_exp BETWEEN scalar_exp AND scalar_exp

like_predicate: scalar_exp LIKE atom

test _for _null: column_ref IS NULL

in_predicate: scalar_exp IN (subquery) | scalar_exp IN (atom)

all_or_any_predicate: scalar_exp comparison any_all_some subquery

existence_test: EXISTS subquery

scalar_exp: scalar_exp op scalar_exp | atom | column_ref | (scalar_exp)

atom: parameter | intnum

subquery: select_exp

select_exp: SELECT name

any_all_some: ANY | ALL | SOME

column_ref: name

parameter: name

intnum: 1
op: + | - | x| /
comparison: = | < | >

name: A

GOFA SQL Injections

o Authentication bypass using the vector: or exists (select 1)

-xample:

select * from users where username = $_GET['u'] and password = $_GET['p];

select * from users where username = admin and password = a or exists (select 1)

Affected: ModSecurity Latest CRS, PHPIDS, WebCastellum, Expose

GOFA SQL Injections

o Authentication bypass using the vector: 1ora=1

1 or a like 1

-xample:

select * from users where username = $_GET['U'] and password = $_GET['p];

select * from users where username = admin and password = 1 or isAdmin like 1

Affected: ModSecurity Latest CRS, PHPIDS (only for statement with ‘like’),
WebCastellum, Expose

GOFA SQL Injections

o Columns/variables fingerprinting using the vectors: and exists (select a)

a or a> any select a

-xample:
select * from users where username = admin and id = $_GET['u'];

select * from users where username = admin and id = 1 and exists (select email)

Affected: ModSecurity Latest CRS, PHPIDS, WebCastellum, Expose

GOFA SQL Injections

o Grammar for extending select queries:
select * from users where user = $_GET/[c]

GOFA SQL Injections

o Grammar for extending select queries:
select * from users where user = $_GET/[c]

S: A main

main: query_exp

query_exp: groupby_exp | order_exp | limit_exp | procedure_exp | into_exp | for_exp |
lock_exp | ; select_exp | union_exp | join_exp
groupby_exp: GROUP BY column_ref ascdesc_exp
order_exp: ORDER BY column_ref ascdesc_exp
Llimit_exp: LIMIT intnum

into_exp: INTO output_exp intnum
procedure_exp: PROCEDURE name (literal)
literal: string | intnum

select_exp: SELECT name

union_exp: UNION select_exp

ascdesc_exp: ASC | DESC

column_ref: name

join_exp: JOIN name ON name

for_exp: FOR UPDATE

lock_exp: LOCK IN SHARE MODE

output_exp: OUTFILE | DUMPFILE

string: name

intnum: 1

name: A

GOFA SQL Injections

» Data retrieval bypass using the vector: 1 right joinaona=a

-xample:

select * from articles left join authors on author.id=$_GET['id']

select * from articles left join authors on author.id= 1 right join users on author.id =
users.id

Affected: ModSecurity Latest CRS, WebCastellum

GOFA SQL Injections

o Columns/variables fingerprinting using the vectors: a group by a asc

Example:

select * from users where username = $_GET['u'];

select * from users where username = admin group by email asc

Affected: ModSecurity Latest CRS, PHPIDS, WebCastellum, Expose

GOFA SQL Injections

o Columns/variables fingerprinting using the vectors: procedure a (a)

Example:

select * from users where username = $_GET['u'];

select * from users where username = admin procedure analyze()

Affected: liblnjection

SFADIf: Learning Attack Vectors

SFADITT

* Available grammars are not always good for finding vulnerabillities.

 Most XSS bypasses result from attack vectors deviating from the HTML
standard.

- Tons of other examples.

e Use the same learning approach to infer the HTML parser specitication!

SFADIff

SFADIff

Automata
| earner

Automata
L earner

Browser

SFADIff

Automata
| earner

Automata
L earner

Browser

SFADIff

Automata
| earner

< Automata
Learner

Browser

VS

SFADIff

Automata

| earner

Automata

| earner

Browser

SFADIff

candidate bypasses

«—

Automata
| earner

VS

y Automata
Learner

Browser

—

candidate bypasses

SFADIff

candidate bypasses

«—

Automata

| earner

VS counterexamples

y Automata

Browser

| earner

—

candidate bypasses

Bypasses

SFADIff

candidate bypasses

«—

VS

Automata

| earner

counterexamples

Automata

—

| earner

Browser

candidate bypasses

¢ C 1) | ® localhost:8080

This site can’t be reached

'192:LightBulb fishingspot$ python bin/lightbulb < examples/test_diff_browser_waf.txt

/| £ | /| /o / \ A VA
$% | $s/ $$ |____ _S$% |_ $98%88S | __ —— 8% |88 |___
$$ | £ NF \ $% N/ $$ | 8% |__$$ |/ | /7 |99 |$% \
55 | $% | /555555 |95555%55 [$5985%%/ $S $$< $% | $% |$S |$95%%%5 |
$% | $$ S5 | 595 |$S | $% | 9% | __ $55999% |5 | S5 |$% [$S | S |
$ | 55 |95 _$% [$S | 9SS | $% |/ |95 |__$% S5 __9% |$% %% |__5% |
$% |$S |$% $5 |8 | %% | % 8%/ 8% $3/ %% $%/ 5% |93 3/
$555555%/ $8/ 5555855 |88/ 88/ $55%5/ $5555%%/ $555%%/ 55/ $55555%/

/' __%% |

$% 8/

555558/

George Argyros, Ioannis Stais

Checking for fst module: 0K
Checking for pythonpda module: OK
Entering module diff_browser_waf

Starting diff_browser_waf:
Initializing learning procedure.
Starting WebSocket Server at port 8000: 0K
Starting HTTP Server at port 8080: O0OK
" Please connect your Browser at http://localhost:8080

[

it

¢ C 1) | ® localhost:8080

This site can’t be reached

'192:LightBulb fishingspot$ python bin/lightbulb < examples/test_diff_browser_waf.txt

/| £ | /| /o / \ A VA
$% | $s/ $$ |____ _S$% |_ $98%88S | __ —— 8% |88 |___
$$ | £ NF \ $% N/ $$ | 8% |__$$ |/ | /7 |99 |$% \
55 | $% | /555555 |95555%55 [$5985%%/ $S $$< $% | $% |$S |$95%%%5 |
$% | $$ S5 | 595 |$S | $% | 9% | __ $55999% |5 | S5 |$% [$S | S |
$ | 55 |95 _$% [$S | 9SS | $% |/ |95 |__$% S5 __9% |$% %% |__5% |
$% |$S |$% $5 |8 | %% | % 8%/ 8% $3/ %% $%/ 5% |93 3/
$555555%/ $8/ 5555855 |88/ 88/ $55%5/ $5555%%/ $555%%/ 55/ $55555%/

/' __%% |

$% 8/

555558/

George Argyros, Ioannis Stais

Checking for fst module: 0K
Checking for pythonpda module: OK
Entering module diff_browser_waf

Starting diff_browser_waf:
Initializing learning procedure.
Starting WebSocket Server at port 8000: 0K
Starting HTTP Server at port 8080: O0OK
" Please connect your Browser at http://localhost:8080

[

it

LightBulb — python « python bin/lightbulb — 104x38

[ll' |>|' |p>o' l/p>l’
al)></p>', 'ick=a()></p>',
nclick=al()></p>"',

|</p>|
'lick=a()></p>",
‘P onclick=

")e</p>",

, '=</p>"',

al)»></p>",

Verifying Web Socket connection: 0K

Awaiting initialization command: OK

Initializing learning procedure.

Initialized from DFA em_vector table is the following:

[ll. l>l' |p>|' l/p>l'
al)»></p>', 'ick=a()></p>',
nclick=al()></p>"',

n</p>|
'Lick=a()></p>"',
‘P onclick=

‘)e</p>"',

y 2</p>",

al)></p>',

Generating a closed and consistent observation table.

Generated conjecture machine

with 26 states.

Generating a closed and consistent observation table.

ANEIra : on i re mach

Processing counterexample <p

Processing counterexample <p
Generated conjecture machine
Generated conjecture machine
Processing counterexample <p
Processing counterexample <p
Generated conjecture machine
Generated conjecture machine
Processing counterexample <p
Processing counterexample <p
Generated conjecture machine
Generated conjecture machine
Processing counterexample <p
Processing counterexample <p
Generated conjecture machine
Generated conjecture machine
Processing counterexample <p
Processing counterexample <p
Generated conjecture machine
Generated conjecture machine
Processing counterexample <p
Processing counterexample <p
Generated conjecture machine

onclick=<()> with length 15.

with 26 states.
with 24 states.
onclick=a()< with length 15.
onclick=a()< with length 15.
with 29 states.
with 24 states.

onclick=a();p0@=a()></p> with length 26.

onclick=:</p> with length 16.
with 29 states.
with 24 states.

onclick=nclick=a()></p> with length 26.

onclick=a;p> with length 15.
with 29 states.
with 24 states.

onclick=nclick=a()></p> with length 26.

onclick=a;p> with length 15.
with 29 states.
with 24 states.

onclick=nclick=a()></p> with length 26.

onclick=a;p> with length 15.
with 29 states.

‘k=al)></p>",
‘onclick=a()></p>",

‘a()></p>', '=al)=></p>"',

‘nclick=al)></p>"',

"()></p>",
'click=a()></p>"',
'«p onclick=a()></p>']

'k=al)></p>"',
'onclick=al)></p>"',

‘al)></p>', '=al)></p>',

‘nclick=a()></p>"',

"()></p>",
'click=a()></p>"',
‘<p onclick=al)></p>"]

oncli; onclick=a()></p> with length 26.

SFADIt XSS Bypass

o XSS Attack vectors in PHPIDS 0.7/ Expose 2.4.0
<p onmouseover=-a() ></p>
<p onmouseover=(a()) ></p>
<p onmouseover=;a() ></p>
<p onmouseover=!a() ></p>
* Other types of events can also be use used for the attack (e.g. "'onClick").

 Rules 71, 27, 2 and 65 are related to this insufficient pattern match.

BONUS:
-ingerprinting WAFS

Generating Program Fingerprints

P_1 P_2 . P_N

Ca

Generating Program Fingerprints

P_1 P_2 L P_N

Ca

Generating Program Fingerprints

P_1 P_2 . P_N

Ca

Generating Program Fingerprints

P_1 P_2 L P_N

SFADIff

Ca

Generating Program Fingerprints

P_1 P_2 L P_N

L

SFADIff

Ca

Generating Program Fingerprints

- P_2 . P N
SFADIff Input causing difference in P_1, P_2

~'C

Generating Program Fingerprints

P_ p_2 P_N

L

Input causing difference in P_1, P_2

SFADIff

P

l

' C

-~

Generating Program Fingerprints

P_1 P_2 L P_N

L

SFADIff

P

l
&

Generating Program Fingerprints

P_1 P_2 L P_N

L

SFADIff

P

l

SFADIft

Ca

Generating Program Fingerprints

P_ p_2 P_N

L

SFADIff

P

l
&

SFADIft

Generating Program Fingerprints

P_1 p_2 P N

L

SFADIff

P

l

SEADff - Input causing difference

' C

-~

Generating Program Fingerprints

P_1 p_2 P N

L

SFADIff

P

l

SEADff - Input causing difference

| P

&S K

Generating Program Fingerprints

P_ p_2 P_N

L

SFADIff

P

l

SFADIft

| P

5O k

Generating Program Fingerprints

P_1 P_2 L P_N

L

SFADIff

P

l

SFADIft

Generating Program Fingerprints

P_1 P_2 L P_N

L

SFADIff

P

l

SFADIft

Generating Program Fingerprints

P_ p_2 P_N

L

SFADIff

P

l

SFADIft

| P

@ @ m Input causing difference

Generating Program Fingerprints

P_ p_2 P_N

L

SFADIff

P

l

SFADIft

| P

@ @ m Input causing difference

P T

Generating Program Fingerprints

P_ p_2 P_N

L

SFADIff

P

l

SFADIft

P.T

uetC/<n

~\Webcastelum 1.8.4

X
X =1 “%23%0A”
4 — Expose 2.4.0
%00
v X >PHPIDS 0.4.0
v » ModSecurity 2.9.1
— PHPIDS 0.6.5 — PHPIDS 0.5.0
v v
- /B” | “et#”
v
X X
> “etc/ . #” —— PHPIDS 0.6.4
X

- PHPIDS 0.6.3

_ightBulb

Modular Design

Core Modules:
e Use automata models and operations
o Extend the SFA learning algorithrr

Built-in Query Handlers:
e Perform membership queries

Modules (and Built-in Modules):
» Use the Built-in Query Handlers
» Extend the Core Modules: GOFA, SFADIft

Library:
o Set of grammars, filters, fingerprints trees and configurations

Core Modules

—xtend SFA Learning algorithm:
 Accept the Alphabet, a Seed and/or a Tests file and a Query handler.
e [nitialise learning and manage results and models

The Alphabet: Set of characters to be used
The Seed File: Knowledge of what the examined inputs should look like
The Tests File: Knowledge of specialised attacks

The Query Handler/Function: Knowledge of how to perform queries for selected
INpuUts

Core Modules

« GOFA:
o Grammar Oriented Filter Auditing.

 SFADIff:
* A black-box ditferential testing framework based on Symbolic
Finite Automata (SFA) learning.

Simple Structure: Class with five (5) basic functions:
setup(), learn(), query(), getresults(), stats()

Built-in Query Handlers

HTTP Request Handler:
* Perform queries on WAF filters and Sanitizers

SQL Query Handler:
* Perform queries on MySQL Parser

Browser Parser Handler:
* Perform queries on Browser Javascript Parsers

Browser Filter Handler:
* Perform queries on Browser Anti-XSS Filters

— 1 [P Request Hanaler

o TJargets WAF Filter

 Requires URL, HT TP Request Type, Parameter and Block
or Bypass Signature

HTTP

Initialize Query GET /?parameter=Payload

>

Core Module True/False ERECUESRgEEIgle]lE] Block/Bypass Signature

GOFA <

MODULE LTTP

Protocol

MySQL Query Handler

» Targets MySQL Database Parser

 Requires Database Credentials

* Requires Prefix Query: e.qg, “SELECT a FROM a WHERE a="*"

Initialize Query Prefix Query + Payload

SQL Handler MySQL

Core Module True/False Result or Empty Database

GOFA <

MODULE

MySQL DB
Driver

Browser Parser Handler

* Targets the Browser HTML and JavaScript Parsing Engine
 Requires web sockets port, web browser port, host and trigger delay

* [nputs must trigger function a() (e.q., <script>al();</script>)

Initialize Query
>

WEB
BROWSER

Browser

/
e
Core Module True/False Handler »
GOFA >) R0y
/‘6& TruelFalse
Server
MODULE

HTTP Protocol and WebSockets

NP\
e,

HTML Page

Browser Filter Handler

* Targets the Browser Anti-XSS Filter, HTML and JavaScript Parsing Engine

Initialize

Core Module
GOFA

Query

>

<

True/False

MODULE

Browser

Filter
Handler

NP\

WEB
BROWSER

IFRAME

HTML Page

Web Server

as|e-/and|
Alen peo

Web Socket
Server —> HTML Page

HTTP Protocol, WebSockets &
Cross Origin Message Events

Using GOFA module and HTTP Handler

Using GOFA module and HTTP Handler

use HTTPHandler as my_query_handler
define URL http://83.212.105.5/PHPIDS07/

define BLOCK impact
back

Using GOFA module and HTTP Handler

use HTTPHandler as my_query_handler
define URL http://83.212.105.5/PHPIDS07/

Query Handler was created.

: | We now can perform
define BLOCK impact membership requests.

back

Using GOFA module and HTTP Handler

use HTTPHandler as my_query_handler
define URL http://83.212.105.5/PHPIDS07/

Query Handler was created.

: | We now can perform
define BLOCK impact membership requests.

back

use GOFA as my_gofa
define TESTS_FILE {library}/regex/PHPIDS070/12.y

define HANDLER my_qguery_handler
back

Using GOFA module and HTTP Handler

use HTTPHandler as my_query_handler
define URL http://83.212.105.5/PHPIDS07/
define BLOCK impact

back

use GOFA as my_gofa
define TESTS_FILE {library}/regex/PHPIDS070/12.y

define HANDLER my_qguery_handler
back

Query Handler was created.
We now can perform
membership requests.

Algorithm was selected and
populated.
Know we can learn
application states.

Using GOFA module and HTTP Handler

use HTTPHandler as my_query_handler
define URL http://83.212.105.5/PHPIDS07/
define BLOCK impact

back

use GOFA as my_gofa
define TESTS_FILE {library}/regex/PHPIDS070/12.y

define HANDLER my_qguery_handler
back

start my_gota

Query Handler was created.
We now can perform
membership requests.

Algorithm was selected and
populated.
Know we can learn
application states.

Bullt-in Modules

WAF Fingerprints Tree Generator:
o Automatically generates a fingerprints tree for a set of WAFs

WAF Distinguisher:
* |dentifies a WAF using a set of fingerprints trees

Model Operations:
* Perform automata operations on stored models, input filters and
grammars

Browser and WAF Differential Testing:
e Queries both Browser and WAF using a predetined set of strings

Bullt-in Rulesets Liorary

Regular Expressions
o Set of WAF filters, and attack models in the form of regular
expressions

Grammars:
e Set of grammars that can be used for GOFA algorithm.

Fingerprints Trees:
e Set of fingerprints trees for a predetined number of WAFs.

Configurations:
o Sample configurations for WAF distinguish tree generation

Grub LightBulb:
https://githulb.com/lightbulb-framework/

Future Work

o Currently building many optimizations.
- Learning will be much faster in the next months.
- Cross checking models is also getting better.

e |ncorporate fuzzers to iImprove models.

e New ideas”

Conclusions

e Current state of WAFs is still (very) ugly.
- Many low hanging fruits.

e Qur vision is to enforce a standard for such products.

- WAFs must eftectively defend against inferred language specitications.
- Learning can run continuously with the assistance of fuzzers.

e \We have a similar line of work on sanitizers.

Another Brick off The Wall:
Deconstructing Web Application
Firewalls Using Automata Learning

George Argyros, loannis Stais

Suman Jana, Ange

OS

Joint Work with:

D). Keromytis, Aggelos Kiayias

